We performed an RNA-Seq analysis comparing thymic lymphoma tissues from the p53-null(n=2) and ?Np63?/?;p53-/- (n=3) or ?Np73?/?;p53-/-(n=3). Mice at 10 weeks of age were injected with either Ad-mCherry or Ad-CRE-mCherry to delete ?Np63/?Np73 in the thymic lmyphomas. We aimed to test by deleting the DNp63/DNp73 in these p53-deficient tumors will mediate tumor regression and analyze the expression profile of the genes Overall design: Examination of thymic lymphoma tissues in 3 different genotypes (p53-/- vs ?Np63?/?;p53-/- or ?Np73?/?;p53-/-)
IAPP-driven metabolic reprogramming induces regression of p53-deficient tumours in vivo.
No sample metadata fields
View SamplesRNA was purified cancer cell lines. The "SAMPLE_ID" sample characteristic is a sample identifier internal to Genentech. The ID of this project in Genentech's ExpressionPlot database is PRJ0013114 Overall design: RNA from NSCLC cell lines after treatment with either DMSO, GDC-0973, AZ-628 or the combination of AZ-628 and GDC-0973 all at 0.1 micro-molar concentration.
Pharmacological Induction of RAS-GTP Confers RAF Inhibitor Sensitivity in KRAS Mutant Tumors.
Cell line, Treatment, Subject
View SamplesSingle cell RNA seq and bioinformatic analysis is used to characterize myeloid differentiation to uncover novel transcriptional networks and key drivers of hematoipoietic development Overall design: Single cell RNA seq of different hematopoietic populations integrated with Chip seq involving multiple markers
Single-cell analysis of mixed-lineage states leading to a binary cell fate choice.
No sample metadata fields
View SamplesSingle cell RNA seq and bioinformatic analysis is used to characterize myeloid differentiation to uncover novel transcriptional networks and key drivers of hematoipoietic development Overall design: Single cell RNA seq of different hematopoietic populations integrated with Chip seq involving multiple markers
Single-cell analysis of mixed-lineage states leading to a binary cell fate choice.
No sample metadata fields
View SamplesSingle cell RNA seq and bioinformatic analysis is used to characterize myeloid differentiation to uncover novel transcriptional networks and key drivers of hematoipoietic development Overall design: Single cell RNA seq of different hematopoietic populations integrated with Chip seq involving multiple markers
Single-cell analysis of mixed-lineage states leading to a binary cell fate choice.
No sample metadata fields
View SamplesSingle cell RNA seq and bioinformatic analysis is used to characterize myeloid differentiation to uncover novel transcriptional networks and key drivers of hematoipoietic development Overall design: Single cell RNA seq of different hematopoietic populations integrated with Chip seq involving multiple markers
Single-cell analysis of mixed-lineage states leading to a binary cell fate choice.
No sample metadata fields
View SamplesSingle cell RNA seq and bioinformatic analysis is used to characterize myeloid differentiation to uncover novel transcriptional networks and key drivers of hematoipoietic development Overall design: Single cell RNA seq of different hematopoietic populations integrated with Chip seq involving multiple markers
Single-cell analysis of mixed-lineage states leading to a binary cell fate choice.
No sample metadata fields
View SamplesSingle cell RNA seq and bioinformatic analysis is used to characterize myeloid differentiation to uncover novel transcriptional networks and key drivers of hematoipoietic development Overall design: Single cell RNA seq of different hematopoietic populations integrated with Chip seq involving multiple markers
Single-cell analysis of mixed-lineage states leading to a binary cell fate choice.
Specimen part, Cell line, Subject
View SamplesSingle cell RNA seq and bioinformatic analysis is used to characterize myeloid differentiation to uncover novel transcriptional networks and key drivers of hematoipoietic development Overall design: Single cell RNA seq of different hematopoietic populations integrated with Chip seq involving multiple markers
Single-cell analysis of mixed-lineage states leading to a binary cell fate choice.
No sample metadata fields
View SamplesSingle cell RNA seq and bioinformatic analysis is used to characterize myeloid differentiation to uncover novel transcriptional networks and key drivers of hematoipoietic development Overall design: Single cell RNA seq of different hematopoietic populations integrated with Chip seq involving multiple markers
Single-cell analysis of mixed-lineage states leading to a binary cell fate choice.
No sample metadata fields
View Samples