This SuperSeries is composed of the SubSeries listed below.
Activation of the aryl hydrocarbon receptor dampens the severity of inflammatory skin conditions.
Sex, Age, Specimen part, Treatment, Subject
View SamplesEnvironmental stimuli are known to contribute to psoriasis pathogenesis and that of other autoimmune diseases, but the mechanism is unknown. Here we show that the aryl hydrocarbon receptor (AhR), a transcription factor that senses environmental stimuli, modulates pathology in psoriasis. AhR-activating ligands reduced inflammation in the lesional skin of psoriasis patients, whereas AhR antagonists upregulated inflammation. Similarly, AhR signaling via the endogenous FICZ ligand reduced the inflammatory response in the imiquimod-induced model of psoriasis and AhR deficient mice exhibited a substantial exacerbation of the disease, compared to AhR sufficient controls. Non-haematopoietic cells, in particular keratinocytes, were responsible for this hyper-inflammatory response, which involved increased reactivity to IL-1beta and upregulation of AP-1 family members of transcription factors. Thus, our data suggest a critical role for AhR in the regulation of inflammatory responses and open the possibility for novel therapeutic strategies in chronic inflammatory disorders. Overall design: Total RNA obtained from skin explants taken from psoriatic patients or healthy donors cultured in the presence of AhR agonist or antagonist
Activation of the aryl hydrocarbon receptor dampens the severity of inflammatory skin conditions.
No sample metadata fields
View SamplesEnvironmental stimuli are known to contribute to psoriasis pathogenesis and that of other autoimmune diseases, but the mechanism is unknown. Here we show that the aryl hydrocarbon receptor (AhR), a transcription factor that senses environmental stimuli, modulates pathology in psoriasis. AhR-activating ligands reduced inflammation in the lesional skin of psoriasis patients, whereas AhR antagonists upregulated inflammation. Similarly, AhR signaling via the endogenous FICZ ligand reduced the inflammatory response in the imiquimod-induced model of psoriasis and AhR deficient mice exhibited a substantial exacerbation of the disease, compared to AhR sufficient controls. Non-haematopoietic cells, in particular keratinocytes, were responsible for this hyper-inflammatory response, which involved increased reactivity to IL-1beta and upregulation of AP-1 family members of transcription factors. Thus, our data suggest a critical role for AhR in the regulation of inflammatory responses and open the possibility for novel therapeutic strategies in chronic inflammatory disorders.
Activation of the aryl hydrocarbon receptor dampens the severity of inflammatory skin conditions.
Specimen part
View SamplesTranscription profiling by array of mouse male retinas to investigate IGF-I-induced chronic gliosis and retinal stress
Insulin-like growth factor I (IGF-I)-induced chronic gliosis and retinal stress lead to neurodegeneration in a mouse model of retinopathy.
Sex, Specimen part
View SamplesCadmium sulfide quantum dots (CdS QDs) are widely used in novel equipment. The relevance of the research lies in the need to develop risk assessments for nanomaterials, using as basis a model plant species.
Genome-wide approach in Arabidopsis thaliana to assess the toxicity of cadmium sulfide quantum dots.
Specimen part, Treatment
View SamplesProlonged cold exposure stimulates the recruitment of beige adipocytes within white adipose tissue. Beige adipocytes depend on mitochondrial oxidative phosphorylation to drive thermogenesis. The transcriptional coregulator TLE3 inhibits mitochondrial and metabolic gene expression in beige adipocytes. Overall design: mRNA profiles of iWAT immortalized preadipocytes, differentiated in culture, and knocking out TLE3 after differentiation, were generated by deep sequencing, in triplicate, using Illumina HiSeq 2500.
Loss of TLE3 promotes the mitochondrial program in beige adipocytes and improves glucose metabolism.
Specimen part, Treatment, Subject
View SamplesRNAs directly interacting with EZH2 were isolated from human colorectal HCT116 cells using an in vivo crosslinking and immunoprecipitation strategy (iCLIP, König J et al, Nat Struct Mol Biol 2010) coupled to an ultrasequencing approach. Overall design: RIP sequencing for 1 Human sample
Intronic RNAs mediate EZH2 regulation of epigenetic targets.
Specimen part, Cell line, Subject
View SamplesFamilial hemophagocytic lymphohistiocytosis (FHL) is a rare, genetically heterogeneous autosomal recessive immune disorder that results when the critical regulatory pathways that mediate immune defense mechanisms and the natural termination of immune/inflammatory responses are disrupted or overwhelmed. In order to advance the understanding of FHL, we performed gene expression profiling of peripheral blood mononuclear cells (PBMCs) from 11 children with untreated FHL. Total RNA was isolated and gene expression levels were determined using microarray analysis. Comparisons between patients with FHL and normal pediatric controls (n = 30) identified 915 down-regulated and 550 up-regulated genes with 2.5-fold difference in expression (P = 0.05). The expression of genes associated with natural killer cell functions, innate and adaptive immune responses, pro-apoptotic proteins, and B- and T-cell differentiation were down-regulated in patients with FHL. Genes associated with the canonical pathways of IL-6, IL-10 IL-1, IL-8, TREM1, LXR/RXR activation, and PPAR signaling and genes encoding of anti-apoptotic proteins were overexpressed in patients with FHL. This, first study of genome-wide expression profiling in children with FHL demonstrates the complexity of gene expression patterns, which underly the immunobiology of FHL.
Gene expression profiling of peripheral blood mononuclear cells from children with active hemophagocytic lymphohistiocytosis.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
PGC-1β promotes enterocyte lifespan and tumorigenesis in the intestine.
Specimen part
View SamplesAnalysis of metabolic pathway gene expression. The hypothesis tested in the present study is to assess mRNA level changes in metabolic genes in intestinal tumors from APCmin mice overexpressing PGC-1 specifically in the intestine.
PGC-1β promotes enterocyte lifespan and tumorigenesis in the intestine.
Specimen part
View Samples