The eukaryotic genome is organized in a three-dimensional structure called chromatin, constituted by DNA and associated proteins, the majority of which are histones. Post-translational modifications of histone proteins greatly influence chromatin structure and regulate many DNA-based biological processes. Methylation of lysine 36 of histone 3 (H3K36) is a post-translational modification functionally relevant during early steps of DNA damage repair. Here, we show that the JMJD-5 regulates H3K36 di-methylation and it is required at late stages of double strand break repair mediated by homologous recombination. Loss of jmjd-5 results in hypersensitivity to ionizing radiation and in meiotic defects, and it is associated with aberrant retention of RAD-51 at sites of double strand breaks. Analyses of jmjd-5 genetic interactions with genes required for resolving recombination intermediates (rtel-1) or promoting the resolution of RAD-51 double stranded DNA filaments (rfs-1 and helq-1) suggest that jmjd-5 prevents the formation of stalled postsynaptic recombination intermediates and favors RAD-51 removal. As these phenotypes are all recapitulated by a catalytically inactive jmjd-5 mutant, we propose a novel role for H3K36me2 regulation during late steps of homologous recombination critical to preserve genome integrity. Overall design: RNA sequencing of N2 and jmjd-5(tm3735) at 20C and 25C at generation 1 (G1) and generation 6 (G6)
JMJD-5/KDM8 regulates H3K36me2 and is required for late steps of homologous recombination and genome integrity.
Subject
View SamplesThe PLZF transcription factor is essential for osteogenic differentiation of hMSCs, however, its regulation and molecular function during this process is not fully understood. Here we revealed that the ZBTB16 locus encoding PLZF, is repressed by Polycomb (PcG) and H3K27me3 in naïve hMSCs. At the pre-osteoblast stage of differentiation, the locus lost PcG binding and H3K27me3, gained JMJD3 recruitment, and H3K27ac resulting in high expression of PLZF. Subsequently, PLZF was recruited to osteogenic enhancers, influencing H3K27 acetylation and expression of nearby genes important for osteogenic function. Furthermore, we identified a latent enhancer within the ZBTB16/PLZF locus itself that became active, gained PLZF, p300 and Mediator binding and looped to the promoter of the nicotinamide N-methyltransferase (NNMT) gene. The increased expression of NNMT correlated with a decline in SAM levels, which is dependent on PLZF and is required for osteogenic differentiation. Overall design: Effect of PLZF knockdown on osteogenic differentiation of hMSC (RNAseq)
PLZF targets developmental enhancers for activation during osteogenic differentiation of human mesenchymal stem cells.
Specimen part, Subject
View SamplesCells were treated with Rakicidin A or an analogue compound BE-43547 or DMSO (control) in three replicates. Overall design: three groups in triplicates.
APD-Containing Cyclolipodepsipeptides Target Mitochondrial Function in Hypoxic Cancer Cells.
Specimen part, Cell line, Subject
View SamplesThe molecular mechanisms of Trypanosoma cruzi induced cardiac fibrosis remains to be elucidated. Primary human cardiomyoctes (PHCM) exposed to invasive T. cruzi trypomastigotes were used for transcriptome profiling and downstream bioinformatic analysis to determine fibrotic-associated genes regulated early during infection process (0 to 120 minutes). The identification of early molecular host responses to T. cruzi infection can be exploited to delineate important molecular signatures that can be used for the classification of Chagasic patients at risk of developing heart disease. Our results show distinct gene network architecture with multiple gene networks modulated by the parasite with an incline towards progression to a fibrogenic phenotype. Early during infection, T. cruzi significantly upregulated transcription factors including activator protein 1 (AP1) transcription factor network components (including FOSB, FOS and JUNB), early growth response proteins 1 and 3 (EGR1, EGR3), and cytokines/chemokines (IL5, IL6, IL13, CCL11), which have all been implicated in the onset of fibrosis. The changes in our selected genes of interest did not all start at the same time point. The transcriptome microarray data, validated by quantitative Real-Time PCR, was also confirmed by immunoblotting and customized Enzyme Linked Immunosorbent Assays (ELISA) array showing significant increases in the protein expression levels of fibrogenic EGR1, SNAI1 and IL 6. Furthermore, phosphorylated SMAD2/3 which induces a fibrogenic phenotype is also upregulated accompanied by an increased nuclear translocation of JunB. Pathway analysis of the validated genes and phospho-proteins regulated by the parasite provides the very early fibrotic interactome operating when T. cruzi comes in contact with PHCM. The interactome architecture shows that the parasite induces both TGF- dependent and independent fibrotic pathways, providing an early molecular foundation for Chagasic cardiomyopathy. Examining the very early molecular events of T. cruzi cellular infection may provide disease biomarkers which will aid clinicians in patient assessment and identification of patient subpopulation at risk of developing Chagasic cardiomyopathy.
Early Regulation of Profibrotic Genes in Primary Human Cardiac Myocytes by Trypanosoma cruzi.
Specimen part
View SamplesRhesus macaques (RMs) inoculated with live-attenuated Rev-Independent Nef simian immunodeficiency virus (Rev-Ind NefSIV) as adults or neonates controlled viremia to undetectable levels and showed no signs of immunodeficiency over 6-8 years of follow-up. We tested the capacity of this live-attenuated virus to protect RMs against pathogenic, heterologous SIVsmE660 challenges
Live attenuated Rev-independent Nef¯SIV enhances acquisition of heterologous SIVsmE660 in acutely vaccinated rhesus macaques.
Specimen part
View SamplesCutaneous, acral and mucosal subtypes of melanoma were evaluated by whole-genome sequencing, revealing genes affected by novel recurrent mutations to the promoter (TERT, DPH3, OXNAD1, RPL13A, RALY, RPL18A, AP2A1), 5-UTR (HNRNPUL1, CCDC77, PES1), and 3-UTR (DYNAP, CHIT1, FUT9, CCDC141, CDH9, PTPRT) regions. TERT promoter mutations had the highest frequency of any mutation, but neither they nor ATRX mutations, associated with the alternative telomere lengthening mechanism, were correlated with greater telomere length. Genomic landscapes largely reflected ultraviolet radiation mutagenesis in cutaneous melanoma and provided novel insights into melanoma pathogenesis. In contrast, acral and mucosal melanomas exhibited predominantly structural changes, and mutation signatures of unknown aetiology not previously identified in melanoma. The majority of melanomas had potentially actionable mutations, most of which were in components of the mitogen-activated protein kinase and phosphoinositol kinase pathways.
Whole-genome landscapes of major melanoma subtypes.
No sample metadata fields
View SamplesWe sought to test whether vaccine-induced immune responses could protect rhesus macaques (RMs) against upfront heterologous challenges with an R5 simian-human immunodeficiency virus, SHIV-2873Nip. We immunized the RMs with recombinant Env proteins heterologous to the challenge virus. For induction of immune responses against Gag, Tat, and Nef, we explored a strategy of immunization with overlapping synthetic peptides (OSP). The immune responses against Gag and Tat were finally boosted with recombinant proteins. The vaccinees and a group of ten control animals were given five low-dose intrarectal (i.r.) challenges with SHIV-2873Nip. All controls and seven out of eight vaccinees became systemically infected; there was no significant difference in viremia levels of vaccinees vs. controls. Prevention of viremia was observed in one vaccinee which showed strong boosting of virus-specific cellular immunity during virus exposures. The protected animal showed no challenge virus-specific neutralizing antibodies in the TZM-bl or A3R5 cell-based assays and had low level ADCC activity after the virus exposures. Microarray data strongly supported a role for cellular immunity in the protected animal. Our study represents a case of protection against heterologous tier 2 SHIV-C by vaccine-induced, virus-specific cellular immune responses.
Multimodality vaccination against clade C SHIV: partial protection against mucosal challenges with a heterologous tier 2 virus.
Specimen part, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Cyclodextrin protects podocytes in diabetic kidney disease.
Cell line
View SamplesAnalysis of gene expression changes in differentiated human podocytes treated with the serum from patients with (DKD+) or without (DKD-) diabetic kidney disease when compared to normal subjects (C). The hypothesis is that the three groups can be distinghed by their differential gene expression pattern. The results obtained revealed important information regarding differences in gene expression in human podocytes treated with the serum from patients with (DKD+) or without (DKD-) diabetic kidney disease when compared to normal subjects (C).
Cyclodextrin protects podocytes in diabetic kidney disease.
Cell line
View SamplesTranscription profiling by array of mouse male retinas to investigate IGF-I-induced chronic gliosis and retinal stress
Insulin-like growth factor I (IGF-I)-induced chronic gliosis and retinal stress lead to neurodegeneration in a mouse model of retinopathy.
Sex, Specimen part
View Samples