the molecular mechanisms for the biphasic effect of alcohol are not fully understood. The goal of the study is to identify genes that are differentially expressed following alcohol exposure of 50mM and 100mM ethanol for 24 hours.
Ethanol upregulates glucocorticoid-induced leucine zipper expression and modulates cellular inflammatory responses in lung epithelial cells.
No sample metadata fields
View SamplesAcquired drug resistance prevents targeted cancer therapy from achieving stable and complete responses. Emerging evidence implicates a key role for nonmutational mechanisms including changes in cell state during early stages of acquired drug resistance. Targeting nonmutational resistance may therefore present a therapeutic opportunity to eliminate residual surviving tumor cells and impede relapse. A variety of cancer cell lines harbor quiescent, reversibly drug-tolerant “persister” cells which survive cytotoxic drugs including targeted therapies and chemotherapies. These persister cells survive drug through nonmutational mechanisms which are poorly understood. Specifically targeting persister cells is a promising strategy to prevent tumor relapse. We sought to identify therapeutically exploitable vulnerabilities in persister cells using the HER2-amplified breast cancer line BT474 as an experimental model. Similar to other persister cell models, upon treatment with the HER2 inhibitor lapatinib (2uM concentration) for nine or more days, the majority of BT474 cells die, revealing a small population of quiescent surviving persister cells. Removal of lapatinib allows the persister cells to regrow and to re-acquire sensitivity to lapatinib. Subsequent lapatinib treatment re-derives persister cells. The reversibility of persister cell drug resistance indicates a nonmutational resistance mechanism. Here we provide RNAseq gene expression profiling data generated from parental BT474 cells compared to BT474 persister cells generated from nine days of treatment with 2 uM lapatinib. These data can be used to identify genes and pathways which are upregulated in persister cells, revealing potential therapeutic targets. Overall design: 3 biological replicates of BT474 persister cells, two biological replicates of BT474 parental cells
Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition.
Specimen part, Cell line, Subject
View SamplesTransgenic StellaGFP ESCs were used to derive primordial germ cells during embryoid body (EB) differentiation, and microarry analysis used to compared FACS sorted Stella-positive cells of day 7 Ebs with the parental ESCs and Stella-negative cells of day 7 Ebs.
A role for Lin28 in primordial germ-cell development and germ-cell malignancy.
No sample metadata fields
View SamplesSco1 is a gene required for cytochrome c oxidase biogenesis and the regulation of copper homeostasis. We characterized the transcriptional changes that occur as a result of liver-specific deletion of Sco1 in mice at 27 days of age
The Mitochondrial Metallochaperone SCO1 Is Required to Sustain Expression of the High-Affinity Copper Transporter CTR1 and Preserve Copper Homeostasis.
Age, Specimen part
View SamplesWe performed RNA-Seq analysis of wildtype and three EPAS1-/- 786-O single cell clones generated by CRISPR/Cas9 to identify the HIF-2a-responsive genes in this cell line. Samples from wildtype 786-O cells treated with DMSO or HIF-2a antagonist compound C2 were also included in this analysis. Overall design: In this experiment, we analyzed the transcriptomic profiles of 2 replicates of wildtype (WT) EPAS1+/+ 786-O cells, 1 replicate for each of the three independent EPAS1-/- 786-O single cell clones, 1 replicate of WT-786-O cells treated with DMSO and 1 replicate of WT-786-O cells treated with 10uM HIF-2a antagonist C2.
A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis.
Subject
View SamplesHuman neural stem and progenitor cells transformed with c-MYC, dominant-negative p53, constitutively active AKT and hTERT formed tumors in mice that recapitulated Group 3 medulloblastoma in terms of pathology and expression profile
DiSCoVERing Innovative Therapies for Rare Tumors: Combining Genetically Accurate Disease Models with In Silico Analysis to Identify Novel Therapeutic Targets.
Specimen part
View SamplesWe examined the transcriptional changes modulated by KDM1A inhibitor NCD-38 by performing global transcriptome analysis. Glioma Stem Cells (GSC10) were treated with either vehicle or NCD-38 for 24 h and the isolated RNA was utilized for RNA-seq analysis. Our results demonstrated that NCD-38 modulated several genes that are involved in unfolded protein response, endoplasmic reticulum stress pathway and NRF-2 mediated oxidative stress response. Overall design: Total RNA was isolated from the GSC10 cells that were treated with vehicle or NCD-38 for 24 hours. Illumina TruSeq RNA Sample Preparation was performed following manufacturer''s protocol. Samples were run on an Illumina HiSeq 2000 in duplicate. The combined raw reads were aligned to UCSC hg19 and genes were annotated by Tophat. Genes were annotated and quantified by HTSeq-DESeq pipeline.
Novel KDM1A inhibitors induce differentiation and apoptosis of glioma stem cells via unfolded protein response pathway.
Treatment, Subject
View SamplesWe examined the transcriptional changes modulated by estrogen receptor beta (ERß) by performing global transcriptome analysis. U87 cells were transduced with lentiviral particles carrying either empty vector or ERß-FLAG expression vector and the RNA was isolated and utilized for RNA-seq analysis. Our results demonstrated that ERß modulated genes were related to homologous recombination, DNA damage response, ATM signaling and cell cycle pathways. Overall design: Total RNA was isolated from U87 cells expressing either empty vector or ERß expression vector. Illumina TruSeq RNA Sample Preparation was performed following manufacturer's protocol. Samples were run on an Illumina HiSeq 2000 in duplicate. The combined raw reads were aligned to UCSC hg19 and genes were annotated by Tophat2. Genes were annotated and quantified by HTSeq-DESeq pipeline.
Estrogen receptor beta enhances chemotherapy response of GBM cells by down regulating DNA damage response pathways.
Cell line, Treatment, Subject
View SamplesWe examined the transcriptional chagnes modulated by ECBI-11 by perfroming global transcriptome analysis. ZR75 cells were treated with either control or ECBI-11 in the presence of E2 for 48 h and the isolated RNA was utilized for RNA-seq analysis. Our results demonstrated that ECBI modulated several genes that are involved in cell cycle, breast cancer signaling, estrogen signaling and apoptosis. Overall design: Total RNA was isolated from the ZR75 cells that were treated with vehicle or ECBI for 48 h. Illumina TruSeq RNA Sample Preparation was performed following manufacturer''s protocol. Samples were run on an Illumina HiSeq 2000 in duplicate. The combined raw reads were aligned to UCSC hg19 and genes were annotated by Tophat. Genes were annotated and quantified by HTSeq-DESeq pipeline.
Estrogen receptor coregulator binding modulators (ERXs) effectively target estrogen receptor positive human breast cancers.
No sample metadata fields
View SamplesGlobal gene expression analysis reveals that Med1 regulates many genes involved in energy metabolism, calcium signaling, and oxidative phosphorylation in myocardium. Overall design: RNA samples were prepared from hearts of 5 controls Med1 floxed mice (Med1fl/fl) and 5 Cre-loxP-mediated cardiomyocyte-specific deletion of Med1 (csMed1-/-) mice. RNA were pooled and subjected to RNA-seq analysis.
Cardiomyocyte-Specific Ablation of Med1 Subunit of the Mediator Complex Causes Lethal Dilated Cardiomyopathy in Mice.
No sample metadata fields
View Samples