Nematode derived substances are known to down regulate host immune responses in order to survive in the human host. Brugia malayi is a parasitic nematode responsible for long lasting and disabling infection known as lymphatic filariasis in humans. The therapeutic benefit of a controlled parasitic nematode infection on the course of inflammatory bowel disease (IBD) has been demonstrated in both animal and human models. However the inability of individual purified nematode proteins to recreate this beneficial effect has limited the application of component immunotherapy to human disease. This experiment addresses the hypothesis that the genes regulated by IL8 and recombinant Brugia malayi AsnRS (rBmAsnRS) are different even though it is known that both molecules interact with IL-8 receptors. Furthermore, we theorize that the signal transduction pathways activated by IL-8 and rBmAsnRS are different because it is known that the extracellular G protein loops utilized by IL-8 and rBmAsnRS to activate IL8 receptors, are different. These results obtained with a single recombinant nematode protein, rBmAsnRS, share immunological features with those observed in a whole nematode infection and include desirable features for treatment of idiopathic inflammatory diseases, such as IBD.
Nematode asparaginyl-tRNA synthetase resolves intestinal inflammation in mice with T-cell transfer colitis.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The oscillating miRNA 959-964 cluster impacts Drosophila feeding time and other circadian outputs.
Specimen part
View SamplesUsing high throughput sequencing of Drosophila head RNA, a small set of miRNAs that undergo robust circadian oscillations in levels were discovered. We concentrated on a cluster of six miRNAs, mir-959-964, all of which peak at about ZT12 or lights-off. The data indicate that the cluster pri-miRNA is transcribed under bona fide circadian transcriptional control and that all 6 mature miRNAs have short half-lives, a requirement for oscillating. Manipulation of food intake dramatically affects the levels and timing of cluster miRNA transcription with no more than minor effects on the core circadian oscillator. This indicates that the central clock regulates feeding, which in turn regulates proper levels and cycling of the cluster miRNAs. Viable Gal4 knock-in as well as cluster knock-out and over-expression strains were used to localize cluster miRNA expression as well as explore their functions. The adult head fat body is a major site of expression, and feeding behavior, innate immunity, metabolism, and perhaps stress responses are under cluster miRNA regulation. The feeding behavior results indicate that there is a feedback circuit between feeding time and cluster miRNA function as well as a surprising role of post-transcriptional regulation in these behaviors and physiology.
The oscillating miRNA 959-964 cluster impacts Drosophila feeding time and other circadian outputs.
Specimen part
View SamplesUsing high throughput sequencing of Drosophila head RNA, a small set of miRNAs that undergo robust circadian oscillations in levels were discovered. We concentrated on a cluster of six miRNAs, mir-959-964, all of which peak at about ZT12 or lights-off. The data indicate that the cluster pri-miRNA is transcribed under bona fide circadian transcriptional control and that all 6 mature miRNAs have short half-lives, a requirement for oscillating. Manipulation of food intake dramatically affects the levels and timing of cluster miRNA transcription with no more than minor effects on the core circadian oscillator. This indicates that the central clock regulates feeding, which in turn regulates proper levels and cycling of the cluster miRNAs. Viable Gal4 knock-in as well as cluster knock-out and over-expression strains were used to localize cluster miRNA expression as well as explore their functions. The adult head fat body is a major site of expression, and feeding behavior, innate immunity, metabolism, and perhaps stress responses are under cluster miRNA regulation. The feeding behavior results indicate that there is a feedback circuit between feeding time and cluster miRNA function as well as a surprising role of post-transcriptional regulation in these behaviors and physiology. Overall design: Six samples of small RNA libraries (RNA size 19 to 29 nucleotides long) were prepared from Drosophila heads, each collected at one circadian time point during a light-dark cycle (ZT0, ZT4, ZT8, ZT12, ZT16, ZT20).
The oscillating miRNA 959-964 cluster impacts Drosophila feeding time and other circadian outputs.
Specimen part, Cell line, Subject
View SamplesCbtOE (Tim-gal4; UAS-cbtFLAG), Tim-gal4 (control for CbtOE), cbtRNAi (Tim-gal4-UAS-Dcr2-UAS-cbtIR-cbtE1) and Tim-gal4;UAS-Dcr2 (control for CbtRNAi) flies. Flies were entrained in LD (light: dark) condition for 3-4 days and harvested at six time points: ZT3, ZT7, ZT11, ZT15, ZT19, ZT23 Fly heads were collected, RNA was extracted and RNA-seq libraries were prepared as previously described (Engreitz et al., 2013) Overall design: Three samples of cbtRNAi and three samples of their controls. Two samples of cbtOE with two samples of their controls.
The transcription factor Cabut coordinates energy metabolism and the circadian clock in response to sugar sensing.
Specimen part, Subject, Time
View SamplesControl (+/cbtE1-UAS-cbt RNAi) or cabut RNAi flies (Tim-gal4, UAS-cbt RNAi) were starved for 16 hours and then exposed to food containing different concentrations of sucrose: 0, 25, 50 and 100 % for 18 hours. Fly heads were collected, RNA was extracted and RNA-seq libraries were prepared as previously described (Engreitz et al., 2013) Overall design: For each sucrose concentration, two samples of cabut RNAi flies and one sample of control flies were sequenced.
The transcription factor Cabut coordinates energy metabolism and the circadian clock in response to sugar sensing.
Specimen part, Subject
View SamplesMicroarray data obtained from control, cbtRNAi (cabut RNAi), and cbtOE (cabut overexpression) flies. From each strain, fly heads at two different time points during the daynight cycle (ZT3 and ZT153) were collected.
The transcription factor Cabut coordinates energy metabolism and the circadian clock in response to sugar sensing.
Specimen part, Treatment
View SamplesFive degradome libraries were constructed from three different seed developmental stages. Separate degradome libraries were constructed for seed coat and cotyledons to identify the tissue specific miRNAs and their potential targets. Sequencing and analysis of degradome libraries gives identification of 183 different targets for 80 known soybean miRNAs. We found 30 cotyledon specific, 18 seed coat specific and 32 miRNAs found in both tissues irrespective of the developmental stages. One interesting observation is that we found more miRNA targets in late seed developmental stages than earlier stages. Additionally, we have validated four different auxin response factor genes as targets for gma-miR160 via RNA ligase mediated 5' rapid amplification of cDNA ends (RLM-5'RACE). GO analysis indicated the enrichment of miRNA target genes in seed development. Overall design: Construction of degradome libraries using cotyledons and seed coats from 3 different developmental stages
Identification of soybean seed developmental stage-specific and tissue-specific miRNA targets by degradome sequencing.
Specimen part, Subject
View SamplesIn a previous study, seed coat and cotyledon tissues of Williams, Richland and T157 soybean lines were investigated to show tissue specificity of CHS siRNA expression (Tuteja et al., 2009). Here, we investigated more tissues such as leaf, root and germinating cotyledon to ascertain the tissue specificity of CHS siRNAs in Williams. Data from multiple small RNA libraries were sequenced deeply by the Illumina high-throughput sequencing technology. The total numbers of small RNA reads were from three million to thirty million, providing sufficient data to show the tissue specificity of CHS siRNA. Overall design: High-throughput sequencing using Genome Analyzer II and Illumina HiSeq 2000 was performed.
The transition from primary siRNAs to amplified secondary siRNAs that regulate chalcone synthase during development of Glycine max seed coats.
Subject
View SamplesTwo high throughput transcript sequencing methods, Digital Gene Expression (DGE) Tag Profiling and RNA-Seq, were used to compare the transcriptional profiles in wild-type (cv. Clark standard, CS) and a mutant (cv. Clark glabrous, i.e., trichomeless or hairless, CG) soybean isoline that carries the dominant P1 allele. DGE data and RNA-Seq data were mapped to the cDNAs (Glyma models) predicted from the reference soybean genome, Williams 82. Extending the model length by 250 bp at both ends resulted in significantly more matches of authentic DGE tags indicating that many of the predicted gene models are prematurely truncated at the 5' and 3' UTRs. The genome-wide comparative study of the transcript profiles of the wild-type versus mutant line revealed a number of differentially expressed genes. One highly-expressed gene, Glyma04g35130, in wild-type soybean was of interest as it has high homology to the cotton gene GhRDL1 gene that has been identified as being involved in cotton fiber initiation and is a member of the BURP protein family. Sequence comparison of Glyma04g35130 among Williams 82 with our sequences derived from CS and CG isolines revealed various SNPs and indels including addition of one nucleotide C in the CG and insertion of ~60 bp in the third exon of CS that causes a frameshift mutation and premature truncation of peptides in both lines as compared to Williams 82. Overall design: 2 samples examined: Clark standard (wild type) and Clark glabrous (soybean hairless mutant)
Transcript profiling reveals expression differences in wild-type and glabrous soybean lines.
Specimen part, Subject
View Samples