Transcription factor Stat5 is constitutively active in human prostate cancer but not in normal prostate epithelium. Stat5 activation is associated with prostate cancer lesions of high histological grades, and is present in the majority of castration-resistant recurrent human prostate cancers. The molecular mechnisms underlying constitutive activation of Stat5 in primary and recurrent human prostate cancer are currently unclear.
Stat5 promotes metastatic behavior of human prostate cancer cells in vitro and in vivo.
Specimen part, Cell line
View SamplesMice with the two calcium-stmulated adenylyl cyclase isoforms (AC1 and AC8; DKO mice) knocked-out show conditioned fear memory deficits. We assessed gene expression changes at baseline and several time points after conditioned fear learning to assess transcriptional changes at different stages of learning. Transcriptional changes were assessed in the amydgdala and hippocampus of DKO and wild-type mice.
Temporal and regional regulation of gene expression by calcium-stimulated adenylyl cyclase activity during fear memory.
Sex, Specimen part
View SamplesWe report that whole body PRMT7-/- adult mice display a significant reduction in in muscle mass. RNA sequencing was performed to identify potential PRMT7 targets. We found that top canonical pathways affected by the loss of PRMT7 includes cell cycle and senescence. Overall design: RNA was extracted from tibialis anterior muscles harvested from 3 WT and 3 PRMT7 null mice at 8months. RNA sequencing was performed to compare mRNA in skeletal muscles between WT and KO mice.
PRMT7 Preserves Satellite Cell Regenerative Capacity.
Age, Specimen part, Cell line, Subject
View SamplesBackground: The muscularis externa (ME) of the adult intestine consists of two layers of visceral smooth muscle (VISM), the inner circular muscle (ICM) and outer longitudinal muscle (OLM), that form sequentially beginning at embryonic day (E) 13 and E15 in the developing mouse. Coordinated contraction of these two layers facilitates the movement of food down the digestive tract. Though abnormal ME function or development has been linked to pseudoobstruction and irritable bowel syndrome, little is known about the molecular character of the smooth muscle that comprises this tissue. We performed transcriptome analysis to identify genes that are enriched in intestinal mesenchyme tissue at E14.5, when the inner circular muscle (ICM) is well established. Results: Expression patterns of enriched mesenchyme genes were examined in publically available in situ databases, revealing over one hundred genes that are expressed in the ICM. Examination of the promoter regions for these genes revealed enrichment for cJUN transcription factor binding sites and cJUN itself was also enriched in ICM. A cJUN ChIP-seq at E14.5 showed that cJUN regulatory regions contained characteristics of muscle enhancers. Overall design: E14.5 mouse intestines were harvested and grown for 24 hours in a transwell culture with or without Cyclopamine treatment. Separated epithelial and mesenchyme tissue populations or whole intestines were submitted for sequencing. Three replicates for each condition were collected.
Transcriptome of the inner circular smooth muscle of the developing mouse intestine: Evidence for regulation of visceral smooth muscle genes by the hedgehog target gene, cJun.
Specimen part, Cell line, Subject
View SamplesAntisense long non-coding (aslnc)RNAs represent a substantial part of eukaryotic transcriptomes that are, in yeast, controlled by the Xrn1 exonuclease. Nonsense-Mediated Decay (NMD) destabilizes the Xrn1-sensitive aslncRNAs (XUT), but what determines their sensitivity remains unclear. We report that 3’ single-stranded (3’-ss) extension mediates XUTs degradation by NMD, assisted by the Mtr4 and Dbp2 helicases. Single-gene investigation, genome-wide RNA analyses and double-stranded (ds)RNA mapping revealed that 3''-ss extensions discriminate the NMD-targeted XUTs from stable lncRNAs. Ribosome profiling showed that XUT are translated locking them for NMD activity. Interestingly, mutants of the Mtr4 and Dbp2 helicases accumulated XUTs, suggesting that dsRNA unwinding is a critical step for degradation. Indeed, expression of anti-complementary transcripts protects cryptic intergenic lncRNAs from NMD. Our results indicate that aslncRNAs form dsRNA that are only translated and targeted to NMD if dissociated by Mtr4 and Dbp2. We propose that NMD buffers genome expression by discarding pervasive regulatory transcripts. Overall design: Strand-specific transcriptome analysis of biological replicates (1) of WT and xrn1-delta cells of the S288C, W303 and SK1 (n & 2n) genetic background of S. cerevisiae; (2) of WT, dcp2-7 and upf1-delta cells; (3) of WT, xrn1-delta and dcp2-7 cells upon treatment of total RNA with Terminator 5''-Phosphate-Dependent Exonuclease. This record also contains CAGE-Seq analysis in wild-type and decapping-deficient cells of the budding yeast S. cerevisiae.
Nonsense-Mediated Decay Restricts LncRNA Levels in Yeast Unless Blocked by Double-Stranded RNA Structure.
Subject
View SamplesThere were two genotypes:
Loss of a callose synthase results in salicylic acid-dependent disease resistance.
No sample metadata fields
View SamplesDiffuse intrinsic pontine glioma (DIPG) is a universally fatal malignancy of the childhood central nervous system, with a median overall survival of 9-11 months. We have previously shown that primary DIPG tissue contains numerous tumor-associated macrophages, and substantial work has demonstrated a significant pathological role for adult glioma-associated macrophages. However, work over the past decade has highlighted many molecular and genomic differences between pediatric and adult glioblastomas (GBM). Thus, we directly compared inflammatory characteristics of DIPG and adult GBM. We found that the leukocyte (CD45+) compartment in primary DIPG tissue samples is predominantly composed of CD11b+ macrophages, with very few CD3+ T-lymphocytes. In contrast, T-lymphocytes are more abundant in adult GBM tissue samples. RNA sequencing of macrophages isolated from primary tumor samples revealed that DIPG- and adult GBM-associated macrophages both express gene programs related to ECM remodeling and angiogenesis, but DIPG-associated macrophages express substantially fewer inflammatory factors than their adult GBM counterparts. Examining the secretome of glioma cells, we found that patient-derived DIPG cell cultures secrete markedly fewer cytokines and chemokines than patient-derived adult GBM cultures. Concordantly, bulk and single-cell RNA sequencing data indicates low to absent expression of chemokines and cytokines in DIPG. Together, these observations suggest that the inflammatory milieu of the DIPG tumor microenvironment is fundamentally different than adult GBM. The low intrinsic inflammatory signature of DIPG cells may contribute to the lack of lymphocytes and non-inflammatory phenotype of DIPG-associated microglia/macrophages. Understanding the glioma subtype-specific inflammatory milieu may inform the design and application of immunotherapy-based treatments. Overall design: RNA-seq of primary isolated microglia/macrophages from early post-mortem DIPG tissue samples, pediatric normal cortex, and adult GBM tissue samples. Libraries were sequenced on Illumina NextSeq 500, 1x75.
Non-inflammatory tumor microenvironment of diffuse intrinsic pontine glioma.
Sex, Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Differential Methylation of H3K79 Reveals DOT1L Target Genes and Function in the Cerebellum In Vivo.
Specimen part
View SamplesTo examine the role of retinol binding protein 7 (RBP7) in PPAR gamma mediated regulation of target gene expression in the carotid artery, RNA-Seq was used to quantitate gene expression in carotid artery from both wild-type and RBP7 knockout mice after ligand-mediated activation of PPAR gamma with Rosiglitazone. Overall design: Carotid artery were removed from wild-type (WT) and RBP7 knockout (KO) mice and treated with either Rosliglitazone (ROSI, 10 uM) or vehicle DMSO (CONT) for 24 hrs.
Retinol-binding protein 7 is an endothelium-specific PPAR<b>γ</b> cofactor mediating an antioxidant response through adiponectin.
Sex, Specimen part, Treatment, Subject
View SamplesDOT1L as methyltransferase of H3K79 is implicated in brian development. Here, we further defined DOT1L function in gene expression during cerebellar development using Microarrays. For that we generated Dot1l knockout mice using a Atoh-Cre driver line resulting in a Dot1l knockout within the cerebellum. The RNA of cerebellar tissue of the Dot1l knockout animals was thereby compared to controls. Additionally we compared the RNA levels of cultured CGNP and CGN samples treated with a DOT1L inhibitor versus DMSO treated cells. The data sets reveals potential new gene expression targets of DOT1L in vivo and in vitro, which ensure a correct development of the cerebellum.
Differential Methylation of H3K79 Reveals DOT1L Target Genes and Function in the Cerebellum In Vivo.
Specimen part
View Samples