For up to 70 weeks we subcutaneuously injected two hundered p53R270HWAPCre mice to different insulin-like molecules (regular insulin, insulin glargine, insulin X10 (of AspB10), IGF1 or vehicle solution). Due to the mammary gland specific p53 mutation the p53R270HWAPCre mice will develop spontanously human like mammary gland tumors in about a year. We found that frequent injections to insulin like molecules decreased the mammary gland tumor latency time in this model. Next we mRNA seqeunced tumors to reveal the underlying mechanisms for the increased tumor progression. For the next generation experiment we isolated mRNA from 50 tumors (10 tumors of each stimulation group) and sequenced with the IonTorrent (40 mil reads, on average 100 bp reads) Overall design: RNA expression profiles of 50 mammary gland tumors were analyzed, 10 tumors per treatment group (chronic insulin, glargine, x10, IGF1 or vehicle exposure)
Insulin-like growth factor 1 receptor activation promotes mammary gland tumor development by increasing glycolysis and promoting biomass production.
Specimen part, Cell line, Subject
View SamplesOncogene-induced senescence (OIS) is a p53-dependent defence mechanism against uncontrolled proliferation. Consequently, many human tumours harbour p53 mutations while others show a dysfunctional p53 pathway, frequently by unknown mechanisms. We identified BRD7, a bromodomain-containing protein whose inhibition allows full neoplastic transformation in the presence of wild-type p53. Intriguingly, in human breast tumours harbouring wild-type, but not mutant p53, the BRD7 gene locus was frequently deleted and low BRD7 expression was found in a subgroup of tumours. Functionally, BRD7 is required for efficient p53-mediated transcription of a subset of target genes. BRD7 interacts with p53 and p300, and is recruited to target gene promoters, affecting histone acetylation, p53 acetylation, and promoter activity. Thus, BRD7 suppresses tumourigenicity by serving as a p53 cofactor required for efficient induction of p53-dependent OIS.
BRD7 is a candidate tumour suppressor gene required for p53 function.
Specimen part, Disease, Cell line
View SamplesIn response to elevated glucocorticoid levels, erythroid progenitors rapidly expand to produce large numbers of young erythrocytes. Previous work demonstrates hematopoietic changes in rodents exposed to various physical and psychological stressors, however, the effects of chronic psychological stress on erythropoiesis has not be delineated. We employed laboratory, clinical and genomic analyses of a murine model of chronic restraint stress (RST) to examine the influence of psychological stress on erythropoiesis. Mice exposed to RST demonstrated markers of early erythroid expansion involving the glucocorticoid receptor. In addition, these RST-exposed mice had increased numbers of circulating reticulocytes and increased erythropoiesis in primary and secondary erythroid tissues. Mice also showed increases in erythroid progenitor populations and elevated expression of the erythroid transcription factor KLF1 in these cells. Together this work describes some of the first evidence of psychological stress affecting erythroid homeostasis through glucocorticoid stimulation and begins to define the transcription factor pathway involved.
Chronic restraint stress upregulates erythropoiesis through glucocorticoid stimulation.
Sex
View SamplesInverse and erythrodermic psoriasis are rare subtypes of psoriasis. Whereas the former is characterized by shiny erythematous non-scaly plaques in the body folds, the latter has widespread redness with fine scale, covering over 80% of the body-surface area, and can be life-threatening. Both are considered to be clinical subtypes of chronic plaque psoriasis, and often co-exist or evolve from plaque psoriasis (Boyd and Menter, 1989; Omland and Gniadecki, 2015), but the pathogenic mechanisms involved are unknown, and current treatments are frequently unsatisfactory. To assess shared and unique processes between chronic plaque, inverse, and erythrodermic psoriasis we analyzed archived formalin-fixed paraffin-embedded biopsies of clinically and histologically confirmed chronic plaque (n=12), inverse (n=40) and erythrodermic psoriasis cases (n=30) and healthy control skin (n=20) using Affymetrix ST 2.1 Arrays. Compared with healthy skin, psoriatic plaque lesions yielded 2450 differentially expressed genes (DEGs) (FDR, p<0.05), inverse psoriasis lesions yielded 408 DEGs (FDR, p<0.05) and erythrodermic psoriasis lesions yielded 447 DEGs (FDR, p<0.05). In total 294 genes were found to be shared among the three disease subtypes (FDR, p<0.05). While the overlap only accounted for 12% of the DEGs in chronic plaque psoriasis, it accounted for 66% and 72% of DEGs in erythrodermic and inverse psoriasis respectively.
IL-17 Responses Are the Dominant Inflammatory Signal Linking Inverse, Erythrodermic, and Chronic Plaque Psoriasis.
Specimen part, Disease, Disease stage
View SamplesGeneralized pustular psoriasis (GPP) is a rare, debilitating, and often life-threatening inflammatory disease characterized by episodic infiltration of neutrophils into the skin, pustule development, and systemic inflammation, which can manifest in the presence or absence of chronic plaque psoriasis (PV). Current treatments are unsatisfactory thus a better understanding the pathogenesis of GPP is warranted. To assess the pathophysiological differences between GPP and PV we performed a gene expression study on formalin-fixed paraffin-embedded biopsies of GPP (n=30) and PV (n=12) lesions and healthy control (n=20) skin. Compared with healthy skin, GPP lesions yielded 365 and PV 898 differentially expressed genes respectively, with 190 upregulated in both diseases. We detected higher expression of IL-1 and IL-36 cytokines in GPP lesions compared with PV, and this occurred proximal to neutrophils. We show both activated neutrophils and isolated neutrophil proteases can activate IL-36. Diverging from the Th1/Th17 pathophysiology of PV, significantly fewer IL23A, IL17A, IFNG, CXCL9, CXCL10 and MX1 transcripts were detected in GPP lesions. Our data indicate a level of sustained activation of IL-1 and IL-36 in GPP, inducing neutrophil chemokine expression, infiltration and pustule formation, suggesting that the IL-1 and IL-36 inflammatory axes are the main drivers of disease pathology in GPP.
IL-17 Responses Are the Dominant Inflammatory Signal Linking Inverse, Erythrodermic, and Chronic Plaque Psoriasis.
Specimen part
View SamplesThe clinical features of psoriasis, characterized by sharply demarcated scaly erythematous plaques, are typically so distinctive that a diagnosis can easily be made on these grounds alone. However, there is great variability in treatment response between individual patients, and this may reflect heterogeneity of inflammatory networks driving the disease. In this study, whole-genome transcriptional profiling was used to characterize inflammatory and cytokine networks in 62 lesional skin samples obtained from patients with stable chronic plaque psoriasis. We were able to stratify lesions according to their inflammatory gene expression signatures, identifying those associated with strong (37% of patients), moderate (39%) and weak inflammatory infiltrates (24%). Additionally, we identified differences in cytokine signatures with heightened cytokine-response patterns in one sub-group of lesions (IL-13-strong; 50%) and attenuation of these patterns in a second sub-group (IL-13-weak; 50%). These sub-groups correlated with the composition of the inflammatory infiltrate, but were only weakly associated with increased risk allele frequency at some psoriasis susceptibility loci (e.g., REL, TRAF3IP2 and NOS2). Our findings highlight variable points in the inflammatory and cytokine networks known to drive chronic plaque psoriasis. Such heterogeneous aspects may shape clinical course and treatment responses, and can provide avenues for development of personalized treatments.
Heterogeneity of inflammatory and cytokine networks in chronic plaque psoriasis.
Specimen part, Treatment
View SamplesPsoriasis is a chronic inflammatory skin disease characterized by marked proliferation of keratinocytes leading to pronounced epidermal hyperplasia, elongation of rete ridges and hyperkeratosis. The most common form of psoriasis, chronic plaque psoriasis (Psoriasis vulgaris), involves relatively stable occurrence and progression of sharply demarcated lesions, usually on the trunk and extremities, which share a combination of trademark histological features, including tortuous and dilated dermal capillaries, loss of the epidermal granular layer, and accumulation of neutrophils beneath parakeratotic scale. In this study, whole-genome transcriptional profiling was used to characterize gene expression in 4 lesional and uninvolved skin samples obtained from patients with stable chronic plaque psoriasis.Skin mRNA expression was analysed by microarray.
Heterogeneity of inflammatory and cytokine networks in chronic plaque psoriasis.
Specimen part, Subject
View SamplesBackground: Psoriasis is a chronic disease characterized by the development of scaly red skin lesions and possible co-morbid conditions. The psoriasis lesional skin transcriptome has been extensively investigated, but mRNA levels do not necessarily reflect protein abundance. Methods: Lesional (PP) and uninvolved (PN) skin samples from 14 patients were analyzed using high-throughput complementary DNA sequencing (RNA-seq) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Results: We identified 4122 differentially expressed genes (DEGs) along with 748 differentially expressed proteins (DEPs). Global shifts in mRNA were modestly correlated with changes in protein abundance (r = 0.40). We identified similar numbers of increased and decreased DEGs, but 4-fold more increased than decreased DEPs. Ribosomal subunit and translation proteins were elevated within lesions, without a corresponding shift in mRNA expression (RPL3, RPS8, RPL11). We identified 209 differentially expressed genes/proteins (DEGPs) with corresponding trends at the transcriptome and proteomic levels. Most DEGPs were similarly altered in at least one other skin disease. Psoriasis-specific and non-specific DEGPs had distinct cytokine-response patterns, with only the former showing disproportionate induction by IL-17A in cultured keratinocytes. Conclusions: Our findings reveal global imbalance between the number of increased and decreased proteins in psoriasis lesions, consistent with heightened translation. This effect could not have been discerned from mRNA profiling data alone. We have also identified high-confidence DEGPs and shown that only those most specific to psoriasis are enriched with IL-17A targets. Overall design: RNA-seq-based comparison between gene expression in psoriasis lesions and uninvolved skin from 14 patients
Proteogenomic analysis of psoriasis reveals discordant and concordant changes in mRNA and protein abundance.
No sample metadata fields
View SamplesTo evaluate the transcriptomes of lesional skin from different body parts of the same individual. Specifically, we conducted a transcriptomic study to investigate expression variability for diseased samples taken from different anatomic regions of same patient, and to compare the variability to between individuals variability. Overall design: 5 psoriasis patients, each with 4 psoriatic and 1 uninvolved skin biopsies. Totally 25 RNA-seq experiments conducted.
Transcriptional determinants of individualized inflammatory responses at anatomically separate sites.
Specimen part, Disease stage, Subject
View SamplesAnalysis of stratified epidermal cultures treated with IL-1a, IL-1F5, IL-1F6, IL-1F8 and IL-1F9 to determine the effects of these cytokines at 24h. Results provide insight into the role of IL-1 family cytokines in the pathogenesis of psoriasis.
IL-1F5, -F6, -F8, and -F9: a novel IL-1 family signaling system that is active in psoriasis and promotes keratinocyte antimicrobial peptide expression.
Specimen part, Treatment
View Samples