This SuperSeries is composed of the SubSeries listed below.
Hematopoietic stem and progenitor cells acquire distinct DNA-hypermethylation during in vitro culture.
Specimen part, Subject
View SamplesCebpa is a gene known for its role in hematopoetic development. Though it is proven to be indispensible in myelopoesis, the details of the role played by Cebpa in dendritic cell development is fairly unknown. Steady state DC development can be modelled in vitro by treating Lin- HSPC with FLT3L.
TNFα Rescues Dendritic Cell Development in Hematopoietic Stem and Progenitor Cells Lacking C/EBPα.
Specimen part
View SamplesHematopoietic stem and progenitor cells (HPCs) can be maintained in vitro, but the vast majority of their progeny loses stemness during culture. We have analyzed DNA methylation (DNAm) profiles of freshly isolated CD34+ cells and upon expansion on either tissue culture plastic (TCP) or mesenchymal stromal cells (MSCs). Cultured HPCs acquired significant DNA-hypermethylation, particularly in up-stream promoter regions and shore-regions of CpG islands (CGIs). To analyze if these DNAm changes are relevant for differential gene expression we analyzed gene expression profiles of additional samples. As expected highly expressed genes (10% with highest signal intensity in gene expression arrays) were hardly methylated at promoter regions, CGIs and shore-regions.
Hematopoietic stem and progenitor cells acquire distinct DNA-hypermethylation during in vitro culture.
Specimen part, Subject
View SamplesC/EBPalpha is a transcription factor critically involved in myeloid development and indispensable for formation of granulocytes. To track the cellular fate of stem and progenitor (LSK) cells, which express C/EBPalpha, we developed a mouse model expressing Cre recombinase from the Cebpa promoter and an inducible EYFP allele. We show that Cebpa/EYFP+ cells represent a significant subset of LSK cells, which predominantly give rise to myeloid cells in steady state hematopoiesis.
Lineage-instructive function of C/EBPα in multipotent hematopoietic cells and early thymic progenitors.
Specimen part
View SamplesBoth bone morphogenetic proteins (BMPs) and histone deacetylases (HDACs) have previously been established to play a role in the development of the three major cell types of the central nervous system: neurons, astrocytes, and oligodendrocytes. We have previously established a connection between these two protein families, showing that HDACs suppress BMP-promoted astrogliogenesis in the embryonic striatum. Since HDACs act in the nucleus to effect changes in transcription, an unbiased analysis of their transcriptional targets could shed light on their downstream effects on BMP-signaling. Using neurospheres from the embryonic striatum as an in vitro system to analyze this phenomenon, we have performed microarray expression profiling on BMP2- and trichostatin A (TSA)-treated cultures, followed by validation of the findings with quantitative RT-PCR and protein analysis.
Distinct and overlapping gene regulatory networks in BMP- and HDAC-controlled cell fate determination in the embryonic forebrain.
Specimen part, Treatment
View SamplesGene expression profiles were recorded from rectal suction specimens of Cystic Fibrosis (CF) patients, carrying the CF-specific D508 mutated CFTR-allele. These profiles were compared with gene expression profiles from rectal suction specimens of non-CF subjects (control).
The CF-modifying gene EHF promotes p.Phe508del-CFTR residual function by altering protein glycosylation and trafficking in epithelial cells.
Specimen part
View SamplesTreatment of MCF7 breast cancer cells by cisplatin leads to a very specific metabolic response and an onset of cell death about 10-11 h after beginning of treatment. For more detailed understanding of the molecular processes underlying the specific metabolic response, mRNA was isolated from MCF7 cells when the specific changes, (i) induction of glycolysis and (ii) onset of cell death, were detected during online measurement in the cell biosensor system.
Real-time monitoring of cisplatin-induced cell death.
Cell line
View SamplesProducts derived from roots of Leuzea carthamoides DC. (maral root) are being promoted as anti-aging and adaptogenic. The phytoecdysteroids are considered as active principles with numerous beneficial effects, but little is known about the pharmacological properties of Leuzea extracts. We, therefore, investigated the effects of a lipophilic Leuzea root extract on ER+ breast cancer MCF-7 cells at transcriptional level in comparison to 17beta-estradiol and the ER antagonist tamoxifen. With the extract 241 genes were regulated more than 1.5 fold. We observed gene regulation in an anti-proliferative and pro-apoptotic manner.
Effects of Leuzea carthamoides on human breast adenocarcinoma MCF-7 cells determined by gene expression profiling and functional assays.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Characterization of a novel OTX2-driven stem cell program in Group 3 and Group 4 medulloblastoma.
Cell line
View SamplesMedulloblastoma (MB) is the most common malignant primary pediatric brain cancer. Among the most aggressive subtypes, Group 3 and Group 4 originate from stem/progenitor cells, frequently metastasize, and often display the worst prognosis, yet, as the names imply, we know the least about the molecular mechanisms driving their progression. Here, we show that the transcription factor orthodenticle homeobox 2 (OTX2) promotes self-renewal while inhibiting differentiation in vitro and increases tumor-initiating capacity from MB stem cell populations in vivo. Characterization of the OTX2 regulatory network revealed a novel relationship between OTX2 and genes associated with multiple axon guidance signaling pathways in Group 3 and Group 4 MB stem/progenitor cells. In particular, OTX2 levels were negatively correlated with semaphorin (SEMA) signaling, as expression of 9 SEMA pathway genes is upregulated following OTX2 knockdown with some being potential direct OTX2 targets. Importantly, this negative correlation between OTX2 and SEMA pathway genes was also observed in patient samples, with lower expression of SEMA4D associated with poor outcome in Group 3 and 4 tumors. Functional studies using established and newly derived MB cell lines demonstrated that increased levels of SEMA pathway genes are associated with decreased self-renewal and growth, and that RHO signaling, known to mediate the effects of SEMA genes, is contributing to the OTX2 KD phenotype. Our study provides critical mechanistic insight into the networks controlled by OTX2 in self-renewing MB cells and reveals novel roles for axon guidance genes and their downstream effectors as putative tumor suppressors and therapeutic targets in Group 3 and Group 4 MB.
Characterization of a novel OTX2-driven stem cell program in Group 3 and Group 4 medulloblastoma.
Cell line
View Samples