The atrioventricular (AV) node is a recurrent source of potentially life-threatening arrhythmias. Nevertheless, limited data are available on its developmental control or molecular phenotype. We used a novel AV node-specific reporter mouse to gain insight into the gene programs determining the formation and phenotype of the AV node. In the transgenic reporter, green fluorescent protein (GFP) expression was driven by 160 kbp of Tbx3 and flanking sequences. GFP was selectively expressed in the AV canal of embryos, and in the AV node of adults, while all other Tbx3+ conduction system components, including the AV bundle, were devoid of GFP expression. Fluorescent AV nodal (Tbx3BAC-Egfp) and complementary working (NppaBAC336-Egfp) myocardial cell populations of E10.5 embryos and E17.5 fetuses were purified using fluorescence-activated cell sorting, and their expression profiles were assessed by microarray analysis. We constructed a comprehensive list of sodium, calcium, and potassium channels specific for the nodal or working myocard. Furthermore, the data revealed that the AV node and the working myocardium phenotypes diverge during development, but that the functional gene classes characteristic for both compartments are maintained. Interestingly, the AV node-specific gene repertoire consisted of multiple neurotrophic factors not yet appreciated to play a role in nodal development. These data present the first genome-wide transcription profiles of the AV node during development, providing valuable information concerning its molecular identity.
Gene expression profiling of the forming atrioventricular node using a novel tbx3-based node-specific transgenic reporter.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Derivation of ground-state female ES cells maintaining gamete-derived DNA methylation.
Sex, Specimen part
View SamplesPreimplantation embryos undergo a transient wave of genome-wide demethylation with the exception of imprinted genes that are critical for fetal development. Here we show that the derivation of female mouse embryonic stem cells (ESCs) in the presence of inhibitors of MEK1/2 and Gsk3 (2i-ESCs), known as 2i or ground-state culture conditions, results in a widespread loss of DNA methylation including a massive erasure of genomic imprints. In this study, we analyzed global gene expression profile and global DNA methylation status in 2i-ESCs and 2i-ESCs derived differentiated cells. S-ESCs are ESCs established under serum-containing medium. 2i_S_ESCs are ESCs established in 2i-containing medium, followed by maintenance in serum-containing medium.
Derivation of ground-state female ES cells maintaining gamete-derived DNA methylation.
Specimen part
View SamplesTo identify downstream transcription factors induced by retinoic acid, we stimulated SFZ cells with 10 M retinoic acid for 24 hours and performed microarray analysis.
Sox4 is involved in osteoarthritic cartilage deterioration through induction of ADAMTS4 and ADAMTS5.
Specimen part, Treatment
View SamplesThis experiment is to examine the effect of PARP inhibitor and Myc shRNA knockdown on transcriptome profiles in MYC-amplified human GBM stem cells MGG4. Overall design: There are totally 4 samples. GBM cell MGG4 expressing scramble shRNA or shRNA targeting Myc were grown in doxycycline (Dox, 1 mg/ml) for 6 days, treated with olaparib (Ola, 10 microM) or DMSO for 24h, and harvested for RNA extraction, followed by RNA sequencing
Myc targeted CDK18 promotes ATR and homologous recombination to mediate PARP inhibitor resistance in glioblastoma.
Cell line, Treatment, Subject
View SamplesEstrogen receptor positive (ER+) breast cancers that develop resistance to therapies that target the ER are the most common cause of breast cancer death. Beyond mutations in ER, which occur in 25-30% of patients treated with aromatase inhibitors (AIs), our understanding of clinical mechanisms of resistance to ER-directed therapies remains incomplete. We identified activating HER2 mutations in metastatic biopsies from eight patients with ER+ metastatic breast cancer who had developed resistance to ER-directed agents, including AIs, tamoxifen, and fulvestrant. Examination of treatment-naïve primary tumors in five patients revealed no evidence of pre-existing mutations in four of five patients, suggesting that these mutations were acquired under the selective pressure of ER-directed therapy. These mutations were mutually exclusive with ER mutations, suggesting a distinct mechanism of acquired resistance to ER-directed therapies. In vitro analysis confirmed that these mutations conferred estrogen independence. In addition, and in contrast to ER mutations, these mutations resulted in resistance to tamoxifen, fulvestrant, and the CDK4/6 inhibitor palbociclib. Resistance was overcome by combining ER-directed therapy with the irreversible HER2 kinase inhibitor neratinib, highlighting an effective treatment strategy in these patients. Overall design: Examination of the transcriptional output (mRNA) of the HER2 activating mutations compared with controls under various drugs. Specifically, we expressed the activating mutations S653C, L755S, V777L, and L869R in ER+/HER2- breast cancer cell line (T47D), and controls (GFP, wild-type HER2, kinase-dead HER2, and ESR1 Y537S). Cell were then treated with DMSO, 1µM fulvestrant, 1µM neratinib, 10µM palbociclib, 1µM fulvestrant + 1µM neratinib, or 1µM fulvestrant + 10µM palbociclib for 24 hours. All experimental conditions were done in 6 replicates, sequenced in 3 replicates
Acquired HER2 mutations in ER<sup>+</sup> metastatic breast cancer confer resistance to estrogen receptor-directed therapies.
No sample metadata fields
View SamplesCo-stimulatory molecules of the CD28 family on T lymphocytes integrate cues from innate immune system sensors, and modulate activation responses in conventional CD4+ T cells (Tconv) and their FoxP3+ regulatory counterparts (Treg). To better understand how costimulatory and co-inhibitory signals might be integrated, we profiled the changes in gene expression elicited in the hours and days after engagement of Treg and Tconv by anti-CD3 and either anti-CD28, -CTLA4, -ICOS, -PD1, -BTLA or -CD80.
Convergent and divergent effects of costimulatory molecules in conventional and regulatory CD4+ T cells.
Sex, Age, Specimen part
View SamplesGene expression levels are determined by the balance between rates of mRNA transcription and decay, and genetic variation in either of these processes can result in heritable differences in transcript abundance. Although the genetics of gene expression has been the subject of intense interest, the contribution of heritable variation in mRNA decay rates to gene expression variation has received far less attention. To this end, we developed a novel statistical framework and measured allele-specific differences in mRNA decay rates in a diploid yeast hybrid created by mating two genetically diverse parental strains. In total, we estimate that 31% of genes exhibit allelic differences in mRNA decay rate, of which 350 can be identified at a false discovery rate of 10%. Genes with significant allele-specific differences in mRNA decay rate have higher levels of polymorphism compared to other genes, with all gene regions contributing to allelic differences in mRNA decay rate. Strikingly, we find widespread evidence for compensatory evolution, such that variants influencing transcriptional initiation and decay having opposite effects, suggesting steady-state gene expression levels are subject to pervasive stabilizing selection. Our results demonstrate that heritable differences in mRNA decay rates are widespread, and are an important target for natural selection to maintain or fine-tune steady-state gene expression levels. Overall design: We measured rates of allele-specific mRNA decay (ASD) in a diploid yeast produced by mating two genetically diverse haploid Saccharomyces cerevisiae strains: the laboratory strain BY4716 (BY), which is isogenic to the reference sequence strain S288C, and the wild Californian vineyard strain RM11-1a (RM). Briefly, we introduced rpb1-1, a temperature sensitive mutation in an RNA polymerase II subunit, to each of the haploid yeast strains, mated the strains, and grew the resulting hybrid diploid to mid-log phase at 24 °C, before rapidly shifting the culture to 37 °C to inhibit transcription. RNA-seq was performed on culture samples taken at 0, 6, 12, 18, 24, and 42 minutes subsequent to the temperature shift. To identify ASD, we used transcribed polymorphisms to distinguish between parental transcripts, and compared the relative levels of transcript abundance over the time course. Note, this experimental design internally controls for trans-acting regulatory variation as well as environmental factors. Under the null hypothesis of no ASD, the proportion of reads from the BY transcript (p_BY = N_BY / (N_BY + N_RM)) observed over the time course remains unchanged. However, genes with ASD will exhibit an increasing or decreasing proportion of BY reads as a function of time. In total, we measured ASD from three independent biological replicates.
Heritable variation of mRNA decay rates in yeast.
Disease, Cell line, Subject
View SamplesThe transcription factor c-MYC intron binding protein 1 (MIBP1) binds to various genomic regulatory regions, including intron 1 of c-MYC. This factor is highly expressed in post-mitotic neurons in the fetal brain and may be involved in various biological steps, such as neurological and immunological processes. In this study, we globally characterized the transcriptional targets of MIBP1 and proteins that interact with MIBP1. Microarray hybridization followed by Gene Set Enrichment Analysis revealed that genes involved in the pathways downstream of MYC, NF-B, and TGF- were downregulated when HEK293 cells stably overexpressed MIBP1. In silico transcription factor binding site analysis of the promoter regions of these downregulated genes showed that the NF-B binding site was the most overrepresented. The upregulation of genes known to be in the NF-B pathway after the knockdown of endogenous MIBP1 in HT1080 cells supports the view that MIBP1 is a downregulator of the NF-B pathway. We also confirmed the binding of the MIBP1 to the NF-B site. By immunoprecipitation and mass spectrometry, we detected O-linked -N-acetylglucosamine (O-GlcNAc) transferase (OGT) as a prominent binding partner of MIBP1. Analyses using deletion mutants revealed that a 154-amino acid region of MIBP1 was necessary for its OGT binding and O-GlcNAcylation. A luciferase reporter assay showed that NF-B-responsive expression was repressed by MIBP1, and stronger repression by MIBP1 lacking the 154-amino acid region was observed. Our results indicate that the primary effect of MIBP1 expression is the downregulation of the NF-B pathway, and that this effect is attenuated by O-GlcNAc signaling.
Genome-wide repression of NF-κB target genes by transcription factor MIBP1 and its modulation by O-linked β-N-acetylglucosamine (O-GlcNAc) transferase.
Cell line
View SamplesNeural stem cells (NSC) with self-renewal and multipotent properties serve as an ideal cell source for transplantation to treat spinal cord injury, stroke, and neurodegenerative diseases. To efficiently induce neuronal lineage cells from NSC for neuron replacement therapy, we should clarify the intrinsic genetic programs involved in a time and place-specific regulation of human NSC differentiation. Recently, we established an immortalized human NSC clone HB1.F3 to provide an unlimited NSC source applicable to genetic manipulation for cell-based therapy. To investigate a role of neurogenin 1 (Ngn1), a proneural basic helix-loop-helix (bHLH) transcription factor, in human NSC differentiation, we established a clone derived from F3 stably overexpressing Ngn1. Genome-wide gene expression profiling identified 250 upregulated genes and 338 downregulated genes in Ngn1-overexpressing F3 cells (F3-Ngn1) versus wild-type F3 cells (F3-WT). Notably, leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5), a novel stem cell marker, showed a robust increase in F3-Ngn1.
Stable expression of neurogenin 1 induces LGR5, a novel stem cell marker, in an immortalized human neural stem cell line HB1.F3.
No sample metadata fields
View Samples