Inflammatory crosstalk between perivascular adipose tissue and and blood vessel wall may contribute to atherosclerosis pathogenesis, and exhibits more pro-inflammatory than adipogenic phenotype than subcutaneous adipocytes.
Human coronary artery perivascular adipocytes overexpress genes responsible for regulating vascular morphology, inflammation, and hemostasis.
Specimen part
View SamplesThe murine model of Lyme disease provides a unique opportunity to study the localized host response to similar stimulus, B. burgdorferi, in the joints of mice destined to develop severe arthritis (C3H) or mild disease (C57BL/6). Pathways associated with the response to infection and the development of Lyme arthritis were identified by global gene expression patterns using oligonucleotide microarrays. A robust induction of IFN responsive genes was observed in severely arthritic C3H mice at one week of infection, which was absent from mildly arthritic C57BL/6 mice. In contrast, infected C57BL/6 mice displayed a novel expression profile characterized by genes involved in epidermal differentiation and wound repair, which were decreased in the joints of C3H mice. These expression patterns were associated with disease state rather than inherent differences between C3H and C57BL/6 mice, as C57BL/6-IL10-/- mice infected with B. burgdorferi develop more severe arthritis that C57BL/6 mice and displayed an early gene expression profile similar to C3H mice. Gene expression profiles at two and four weeks post infection revealed a common response of all strains that was likely to be important for the host defense to B. burgdorferi and mediated by NF-kB-dependent signaling. The gene expression profiles identified in this study add to the current understanding of the host response to B. burgdorferi and identify two novel pathways that may be involved in regulating the severity of Lyme arthritis.
Gene expression profiling reveals unique pathways associated with differential severity of lyme arthritis.
No sample metadata fields
View SamplesThe control of cell identity is orchestrated by transcriptional and chromatin regulators in the context of specific chromosome structures. With the recent isolation of human naive embryonic stem cells (ESCs) representative of the ground state of pluripotency, it is possible to deduce this regulatory landscape in one of the earliest stages of human development. Here we generate cohesin ChIA-PET chromatin interaction data in naive and primed human ESCs and use it to reconstruct and compare the 3D regulatory landscapes of these two stages of early human development. The results reveal shared and stage-specific regulatory landscapes of topological domains and their subdomains, which consist of CTCF-CTCF/cohesin loops and enhancer-promoter/cohesin loops. The enhancer-promoter loop data reveal that genes with key roles in pluripotency are nearly always regulated by one or more super-enhancers, and show that these genes tend to occur in insulated neighborhoods. Our results reveal the key features of the 3D regulatory landscape of early human cells that form the foundation for embryonic development. Overall design: Polyadenylated RNA-seq from naive and primed human embroynic stem cells.
3D Chromosome Regulatory Landscape of Human Pluripotent Cells.
No sample metadata fields
View SamplesInactivating mutations in the zinc finger gene PHF6 are seen in approximately 40% of adult T-cell acute lymphoblastic leukemias (T-ALLs) and 3% of adult acute myeloid leukemias (AMLs). The absence of PHF6 mutations in B-cell lineage malignancies has led to the hypothesis that PHF6 may act as a lineage-specific tumor suppressor gene. Here, we demonstrate that PHF6 plays a critical role in regulating B-cell identity in the context of B-cell precursor acute lymphoblastic leukemia (preB-ALL). Transplantation of Phf6 knockout preB-ALL cells (hereafter referred to as Phf6KO cells) into immunocompetent syngeneic recipients resulted in the development of a fully penetrant lymphoma-like disease. Strikingly, the resulting lymphomas showed robust up-regulation of the canonical T-cell marker CD4, suggesting that Phf6KO cells adopt a T-cell program in the context of leukemogenesis. RNA sequencing analysis revealed numerous differentially expressed (DE) genes in Phf6WT and Phf6KO cells, including a significant down-regulation of genes and gene sets involved in pathways important for B-cell development. Chromatin immunoprecipitation followed by high-throughput sequencing analysis revealed that PHF6 co-localizes with H3K27ac signals close to the transcription start sites (TSSs) and enhancer regions of a significant proportion of DE genes. Notably, regions flanking the TSS of DE genes showed significant enrichment for binding sites of several well-described master regulators of B-cell development, including PU.1, EGR-1, EBF-1, NF-kB, TCF3 and TCF12. We found that PHF6 and TCF12 physically interact in preB-ALL cells, suggesting that these factors act synergistically in the establishment and maintenance of B-cell identity. In addition, we found that a human PHF6 mutant T-ALL cell line has an incompletely rearranged IGH locus, strongly suggesting that T-ALL can have a B-cell origin. These findings reveal an essential role for PHF6 in the establishment and maintenance of B-cell identity in preB-ALL by directly activating genes that are crucial for B-cell lineage commitment and maintenance. Collectively, these results indicate that loss of function of PHF6 in preB-ALL leads to an unstable cellular state in which cells acquire alternate developmental programs (such as the T-lineage program) to survive, potentially explaining the apparent absence of PHF6 mutations in human B cell-lineage malignancies. Overall design: Gene expression profiles by RNA-Seq of 3 Phf6 wild-type preB-ALL cells, 3 shPhf6 preB-ALL cells, 6 Phf6 knockout (2 different sgRNAs) preB-ALL cells
PHF6 regulates phenotypic plasticity through chromatin organization within lineage-specific genes.
Specimen part, Cell line, Subject
View SamplesGene expression profile of joint tissue from C3H and interval specific congenic mouse lines (ISCL) following infection with Borrelia burgdorferi
Interval-specific congenic lines reveal quantitative trait Loci with penetrant lyme arthritis phenotypes on chromosomes 5, 11, and 12.
Specimen part
View SamplesThere is considerable evidence that chromosome structure plays important roles in gene control, but we have limited understanding of the proteins that contribute to structural interactions between gene promoters and their enhancer elements. Large DNA loops that encompass genes and their regulatory elements depend on CTCF-CTCF interactions, but most enhancer-promoter interactions do not depend on this structural protein. Here we show that the transcription factor Yin Yang 1 (YY1) contributes to enhancer-promoter structural interactions in a manner analogous to DNA interactions mediated by CTCF. YY1 binds to active enhancers and promoter-proximal elements in all cells examined. YY1 forms dimers that can facilitate DNA interactions. Deletion of YY1 binding sites or depletion of YY1 can disrupt enhancer-promoter looping and normal gene expression. We propose that YY1-mediated enhancer-promoter interactions are a general feature of mammalian gene control. Overall design: Single-end 40 bp Poly-A RNA-seq in mouse embryonic stem cells before and after YY1 depletion
YY1 Is a Structural Regulator of Enhancer-Promoter Loops.
Specimen part, Treatment, Subject, Time
View SamplesThere is considerable evidence that chromosome structure plays important roles in gene control, but we have limited understanding of the proteins that contribute to structural interactions between gene promoters and their enhancer elements. Large DNA loops that encompass genes and their regulatory elements depend on CTCF-CTCF interactions, but most enhancer-promoter interactions do not depend on this structural protein. Here we show that the transcription factor Yin Yang 1 (YY1) contributes to enhancer-promoter structural interactions in a manner analogous to DNA interactions mediated by CTCF. YY1 binds to active enhancers and promoter-proximal elements in all cells examined. YY1 forms dimers that can facilitate DNA interactions. Deletion of YY1 binding sites or depletion of YY1 can disrupt enhancer-promoter looping and normal gene expression. We propose that YY1-mediated enhancer-promoter interactions are a general feature of mammalian gene control. Overall design: Single-cell RNA-seq in mouse embryonic stem cells with and without YY1 protein
YY1 Is a Structural Regulator of Enhancer-Promoter Loops.
Specimen part, Subject
View SamplesT lymphocytes are essential contributors to the adaptive immune system and consist of multiple lineages that serve various effector and regulatory roles. As such, precise control of gene expression is essential to the proper development and function of these cells. Previously, we identified Snai2 and Snai3 as being essential regulators of immune tolerance partly due to the impaired function of CD4+ regulatory T cells in Snai2/3 conditional double knockout mice. Here we extend those previous findings using a bone marrow transplantation model to provide an environmentally unbiased view of the molecular changes imparted onto various T lymphocyte populations once Snai2 and Snai3 are deleted. The data presented here demonstrate that Snai2 and Snai3 transcriptionally regulate the cellular fitness and functionality of not only CD4+ regulatory T cells but effector CD8a+ and CD4+ conventional T cells as well. This is achieved through the modulation of gene sets unique to each cell type and includes transcriptional targets relevant to the survival and function of each T cell lineage. As such, Snai2 and Snai3 are essential regulators of T cell immunobiology. Overall design: GFP- CD3e+ CD8a+ CD4-, GFP- CD3e+ CD8a- CD4+ CD25- and GFP- CD3e+ CD8a- CD4+ CD25+ T cells were isolated from spleens of UBC-GFP mice transplanted with WT or cDKO lineage-depleted donor bone marrow following lethal irradiation of recipient mice. RNA-seq was performed on 3-4 biological replicates from each genotype for all T cell populations analyzed.
Snai2 and Snai3 transcriptionally regulate cellular fitness and functionality of T cell lineages through distinct gene programs.
Specimen part, Cell line, Subject
View SamplesPlac1 is an X-linked (Xq26) trophoblast gene expressed at high levels in the placenta, at low levels in the testis, but not in other normal somatic tissues. However, it is re-expressed in several malignancies, including breast, colon, lung, gastric, liver and endometrial cancers as well as in most human cancer cell lines. Plac1 contains HLA-A2-restricted epitopes capable of eliciting a cytotoxic T lymphocyte (CTL) response against human breast cancer cells, and colorectal cancer patients with a Plac1-specific CTL response demonstrate long-term survival. To explore the role of Plac1 in cancer, mouse mammary tumor E0771 cells expressing high levels of Plac1 were transduced with a lentivirus expressing a Plac1 shRNA (E0771/shPlac1).
Plac1 Is a Key Regulator of the Inflammatory Response and Immune Tolerance In Mammary Tumorigenesis.
Cell line
View SamplesWe studied macrophage gene expression from mice fed chow diet (C) or 60% high fat diet (HF), that phagocytized C-RBC, HFD-RBC, or no RBC.
Red Blood Cell Dysfunction Induced by High-Fat Diet: Potential Implications for Obesity-Related Atherosclerosis.
Treatment
View Samples