A mouse embryonic stem cell line was generated which stably expressed the ngn3 transcription factor under the control of the Tet-On inducible system using knock-ins in the ROSA26 and the HPRT loci. The undifferentiated mouse embryonic stem cells were then differentiated into Embryoid Bodies in suspension culture and were either treated with Doxycycline to induce NGN3 expression or left untreated as a contol. Cells were harvested at 12 hours, 24 hours and 48 hours.
A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation.
Sex, Specimen part, Cell line, Treatment, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Derivation of haploid embryonic stem cells from mouse embryos.
Specimen part
View Samplesgene expression differences were analysed between haploid and diploid ES cells
Derivation of haploid embryonic stem cells from mouse embryos.
Specimen part
View SamplesThe non-coding Xist RNA triggers silencing of one of the two female X chromosomes during X inactivation in mammals. Gene silencing by Xist is restricted to special developmental contexts found in cells of the early embryo and specific hematopoietic precursors. The absence of critical silencing factors might explain why Xist cannot silence outside these contexts. Here, we show that Xist can also initiate silencing in a lymphoma model. Using the tumor context we identify the special AT rich binding protein SATB1 as an essential silencing factor. We show that loss of SATB1 in tumor cells abrogates the silencing function of Xist. In normal female lymphocytes Xist localizes along SATB1 filaments and, importantly, forced Xist expression can relocalize SATB1 into the Xist cluster. This reciprocal influence on localization suggests a molecular interaction between Xist and SATB1. SATB1 and its close homologue SATB2 are expressed during the initiation window for X inactivation in embryonic stem cells and are recruited to surround the Xist cluster. Furthermore, ectopic expression SATB1 or SATB2 enables gene silencing by Xist in embryonic fibroblasts, which normally do not provide an initiation context. Thus, SATB1 functions as a crucial initiation factor and may act to organize genes for silencing by Xist during the initiation of X inactivation.
SATB1 defines the developmental context for gene silencing by Xist in lymphoma and embryonic cells.
Specimen part
View SamplesThe understanding of metastatic spread is limited and molecular mechanisms causing particular characteristics of metastasis, like varying dormancy periods of Mets originating from the same primary tumor entity or the differing number of Mets in patients with the same primary tumor, are largely unknown. Knowing the molecular fundamentals of these phenomena would support the prognosis of patients outcome and facilitate the decision for an appropriate therapy regime.
Gene signatures of pulmonary metastases of renal cell carcinoma reflect the disease-free interval and the number of metastases per patient.
Sex
View SamplesThe understanding of metastatic spread is limited and molecular mechanisms causing particular characteristics of metastasis are largely unknown. This comprises the extremely varying dormancy periods of tumor cells in the secondary organ after metastatic spread, represented by the disease-free survival (DFS) of the patients, or differing numbers of metastases in different patients. Knowing the molecular fundamentals of these phenomena would support the individual prediction of patients outcome and facilitate the decision for an appropriate monitoring and therapy regime.
CD31, EDNRB and TSPAN7 are promising prognostic markers in clear-cell renal cell carcinoma revealed by genome-wide expression analyses of primary tumors and metastases.
Sex, Specimen part, Disease stage
View SamplesExpression quantitative trait loci (eQTL) analyses were conducted separately on the glomerular and tubular portions of healthy human kidney samples obtained from subjects of European descent. Overall design: We aimed to define genotype driven gene expression changes in the glomerular and tubular compartments of human kidneys, identifying genetic variants (eVariants) that influence the expression of genes (eGenes). Later, we integrated this information with genotype and phenotype association studies (GWAS) to identify genes for which expression in the kidney shows differences in patients with GWAS variants.
Mapping eGFR loci to the renal transcriptome and phenome in the VA Million Veteran Program.
Specimen part, Disease, Disease stage, Subject
View Samples