Analysis of global gene expression profiles of FACS-sorted, human Ad5- and CMV-specific CD4 T cells from the same PBMC sample of healthy donros, using affymetrix Human Gene 2.0ST Gene-Chips;
Preferential infection of human Ad5-specific CD4 T cells by HIV in Ad5 naturally exposed and recombinant Ad5-HIV vaccinated individuals.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Chromatinized protein kinase C-θ directly regulates inducible genes in epithelial to mesenchymal transition and breast cancer stem cells.
Cell line, Treatment
View SamplesEpithelial to mesenchymal transition (EMT) is activated during cancer invasion and metastasis, enriches for cancer stem cells (CSCs), and contributes to therapeutic resistance and disease recurrence. The epithelial cell line MCF7, can be induced to undergo EMT with the induction of PKC by PMA. 5-10% of the resulting cells have a CSC phenotype. This study looks at the transcriptome of these cells and how it differs from cells with a non-CSC phenotype.
Chromatinized protein kinase C-θ directly regulates inducible genes in epithelial to mesenchymal transition and breast cancer stem cells.
Cell line, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
LSD1 activation promotes inducible EMT programs and modulates the tumour microenvironment in breast cancer.
Cell line, Treatment
View SamplesBortezomib-based secondary induction therapy and mobilization could represent alternative strategies to reduce tumor burden. We used microarrays to investigate genome-wide expression changes between bortezomib and non-bortzomib mobilizaton strategies and identified distinct genes and pathways that were significantly differentially regulated.
Overcoming the response plateau in multiple myeloma: a novel bortezomib-based strategy for secondary induction and high-yield CD34+ stem cell mobilization.
Specimen part, Disease, Disease stage, Treatment
View SamplesSporadic Creutzfeldt-Jakob disease (sCJD) is the most prevalent form of human prion disease and it is characterized by the presence of neuronal loss, spongiform degeneration, chronic inflammation and the accumulation of misfolded and pathogenic prion protein (PrPSc). The molecular mechanisms underlying these alterations are largely unknown, but the presence of intracellular neuronal calcium (Ca+2) overload, a general feature in models of prion diseases, is suggested to play a key role in prion pathogenesis. Here we describe the presence of massive regulation of Ca+2 responsive genes in sCJD brain tissue, accompanied by two Ca+2-dependent processes: endoplasmic reticulum stress and the activation of the cysteine proteases Calpains 1/2. Pathogenic Calpain activation in sCJD is linked to the cleavage of their cellular substrates, impaired autophagy and lysosomal damage, which is partially reversed by Calpain inhibition in a cellular prion model. Calpain 1 treatment enhances seeding activity of PrPSc in a prion conversion assay. Neuronal lysosomal impairment caused by Calpain over activation leads to the release of the lysosomal protease Cathepsin S that in sCJD mainly localises in axons. Additionally, massive Cathepsin S overexpression is detected in microglial cells. Alterations in Ca+2 homeostasis and activation of Calpain-Cathepsin axis already occur at pre-clinical stages of the disease as detected in a humanized sCJD mouse model. Altogether our work indicates that unbalanced Calpain-Cathepsin activation is a relevant contributor to the pathogenesis of sCJD at multiple molecular levels and a potential target for therapeutic intervention. Overall design: To identify differentially expressed genes during development of sCJD pathology we analysed the expression levels in the cortical region of tg340-PRNP129MM mice infected with sCJD MM1 brain homogenates at pre-clinical (120 dpi) and clinical (180 dpi) stages.
Altered Ca<sup>2+</sup> homeostasis induces Calpain-Cathepsin axis activation in sporadic Creutzfeldt-Jakob disease.
Subject, Time
View SamplesAdaptive immune responses to infection result in the formation of memory T cells that respond more rapidly and robustly to reinfections, providing the basis of the immunological memory targeted by vaccines. Underlying the enhanced responsiveness of memory cells is their ability to rapidly up-regulate the transcription of key effector genes at a higher level compared to nave cells (termed transcriptional memory). While transcriptionally permissive histone modifications are known to provide chromatin structures that facilitate transcriptional memory, the molecular mechanisms that underpin this process still remain elusive. Here we investigate the transcriptional response of the Jurkat T cell line to stimulation with PMA and Ionomycin and determine if this response differs in cells that have seen stimuli previously.
Nuclear PKC-θ facilitates rapid transcriptional responses in human memory CD4+ T cells through p65 and H2B phosphorylation.
Cell line, Treatment
View SamplesOur study describes in detail the role of Bmp2 during cardiac valve developmnent and its implication in Notch pathway activation. Overall design: Hearts were isolated from WT and Bmp2GOF;Nkx2.5-Cre mouse embryos at stage E9.5 and their expression profile characterized by RNA-seq
Bmp2 and Notch cooperate to pattern the embryonic endocardium.
Specimen part, Subject
View SamplesThe rapid decline of ovarian function in TAF4b-null mice begins in early postnatal life and follicle depletion is completed by sixteen weeks.
Accelerated ovarian aging in the absence of the transcription regulator TAF4B in mice.
No sample metadata fields
View SamplesThe histone methyltransferase mixed lineage leukemia (MLL) is essential to maintain hematopoietic stem cells and is a leukemia protooncogene. Although Hox genes are well-characterized targets of MLL and MLL fusion oncoproteins, the range of Mll-regulated genes in normal hematopoietic cells remains unknown. Here we identify and characterize part of the Mll-transcriptional network in hematopoietic stem cells with an integrated approach by using conditional loss-of-function models, genomewide expression analyses, chromatin immunoprecipitation, and functional rescue assays. The Mll-dependent transcriptional network extends well beyond the previously appreciated Hox targets, is comprised of many characterized regulators of self-renewal, and contains target genes that are both dependent and independent of the MLL cofactor, Menin. Interestingly, Prdm16 emerged as a target gene that is uniquely effective at partially rescuing Mll-deficient hematopoietic stem and progenitor cells. This work highlights the tissue-specific nature of regulatory networks under the control of MLL/Trithorax family members and provides insight into the distinctions between the participation of MLL in normal hematopoiesis and in leukemia.
An MLL-dependent network sustains hematopoiesis.
Specimen part
View Samples