CD34 positive cells of bone marrow samples from normal and MDS samples were cultured ex vivo into erythroid conditions.
Defective nuclear localization of Hsp70 is associated with dyserythropoiesis and GATA-1 cleavage in myelodysplastic syndromes.
Specimen part
View SamplesThe present study aimed to determine mRNA expression profilling of indirect immobilized Jagged1 treated human dental pulp cells. Human dental pulp cells were seeded on indirect immobilized Jagged1 surface for 24 h. Cells on hFc immobilized surface was employed as the control. RNA sequencing was performed using NextSeq500, Illumina. Data were processed on FastQC and FastQ Toolkit and subsequently mapped with Homo sapiens hg38 using TopHat2. Mapped data were processed through Cufflink2 and Cuffdiff2. Results demonstrated 1,465 differentially expressed genes in Jagged1 treated cells compared with the control. Enriched pathway analysis revealed that Jagged1 treated cells upregulated genes mainly involved in extracellular matrix organization, disease, and signal transduction categories. However, genes related to cell cycle, DNA replication and DNA repair categories were downregulated. In conclusion, Jagged1 activates Notch signaling and regulates cell cycle pathway in hDPs. Overall design: The mRNA profiles of human dental pulp cells treated with indirect immobilized Jagged1 (10nM) for 24 h was evaluated by next genereation RNA sequencing (NextSeq 500, Illumina) in triplicates. Cells on hFc immobilized surface was used as the control. In some condition, cells were pretreated with a gamma secretase inhibitor (DAPT; 20 uM) for 30 mins prior to Jagged1 exposure.
RNA sequencing data of Notch ligand treated human dental pulp cells.
Specimen part, Treatment, Subject
View SamplesBone development and regeneration is associated with the Wnt signaling pathway that, according to literature, can be modulated by lithium ions (Li+). The aim of this study was to evaluate the gene expression profile during peri-implant healing of poly(lactic-co-glycolic acid) (PLGA) implants with incorporated Li+, while PLGA without Li+ was used as control, and a special attention was then paid to the Wnt signaling pathway. The implants were inserted in rat tibia for 7 or 28 days and the gene expression profile was investigated using a genome-wide microarray analysis. The results were verified by qPCR and immunohistochemistry. Histomorphometry was used to evaluate the possible effect of Li+ on bone regeneration. The microarray analysis revealed a large number of significantly differentially regulated genes over time within the two implant groups. The Wnt signaling pathway was significantly affected by Li+, with approximately 34% of all Wnt-related markers regulated over time, compared to 22% for non-Li+ containing (control; Ctrl) implants. Functional cluster analysis indicated skeletal system morphogenesis, cartilage development and condensation as related to Li+. The downstream Wnt target gene, FOSL1, and the extracellular protein-encoding gene, ASPN, were significantly upregulated by Li+ compared with Ctrl. The presence of -catenin, FOSL1 and ASPN positive cells was confirmed around implants of both groups. Interestingly, a significantly reduced bone area was observed over time around both implant groups. The presence of periostin and calcitonin receptor-positive cells was observed at both time points. This study is to the best of the authors knowledge the first report evaluating the effect of a local release of Li+ from PLGA at the fracture site. The present study shows that during the current time frame and with the present dose of Li+ in PLGA implants, Li+ is not an enhancer of early bone growth, although it affects the Wnt signaling pathway.
Gene expression profiling of peri-implant healing of PLGA-Li+ implants suggests an activated Wnt signaling pathway in vivo.
Sex, Specimen part, Treatment, Time
View SamplesGene expression profiling is a promising diagnostic and prognostic tool. Expression profiles are snap-shots of mRNA levels at time of extraction and they have been shown to be affected by tissue handling during sample collection. The effect of cold (room temperature) ischemia in the time interval between surgical removal of the specimen and freezing has been described in a number of studies. However, not much is known about the effect of warm (body temperature) ischemia during surgery.
Differential effect of surgical manipulation on gene expression in normal breast tissue and breast tumor tissue.
Sex, Specimen part, Disease, Subject
View SamplesConjugated linoleic acid (CLA), a class of fatty acids found in beef and dairy products, has been shown to inhibit tumorigenesis in a variety of cancer model systems. Based on previously well-documented anti-tumor activity of CLA in rodent models of breast cancer, a pilot study was initiated to examine the effect of dietary CLA in a well-established transgenic model of breast cancer. Western blots were performed for the detection of AKT, c-Src, ERK1/2, and Cdc24. CLA significantly increased tumor burden (p<0.1) independent of an increase in oncogenic signaling. Mammary gland whole mounts indicated a loss of mammary adipose and extensive epithelial expansion in CLA-treated animals. Microarray analysis indicated a significant reduction in cytoskeletal related genes with at least a two-fold decrease in five out of six CLA-fed animals compared to untreated controls. Reduction of Cdc42, a key regulator of cell adhesion and cytoskeletal arrangements, was confirmed at the protein level by western blot (p<0.01). These findings suggest that dietary CLA may advance the malignant phenotype by promoting a loss of cell polarity and adhesion in the mammary gland epithelium. This action may have serious clinical implications for a subset high-risk population and warrants further investigation.
Pilot study on the effects of dietary conjugated linoleic acid on tumorigenesis and gene expression in PyMT transgenic mice.
Sex, Age, Specimen part
View SamplesObjective. Previous observations suggest that active systemic juvenile idiopathic arthritis (sJIA) is associated with a prominent erythropoiesis gene expression signature. The aim of this study was to determine the association of this signature with peripheral blood mononuclear cell (PBMC) subpopulations and its specificity for sJIA as compared to related conditions.
Immature cell populations and an erythropoiesis gene-expression signature in systemic juvenile idiopathic arthritis: implications for pathogenesis.
Sex, Specimen part, Race
View SamplesGene expression analysis of purified KitL-tomato+ and KitL-tomato- thymic vascular endothelial cells, cortical and medullary thymic epithelial cells from 5 weeks old male kitL-tomato reporter mice Overall design: Differentially expressed genes analysis of thymic stromal cells
A dynamic niche provides Kit ligand in a stage-specific manner to the earliest thymocyte progenitors.
No sample metadata fields
View SamplesSingle cell whole transcriptome analysis of young (2-3 months) and old (20-25 months) mouse HSCs, defined as Lin–Sca-1+c-Kit+150+CD48– . Overall design: Differential gene expression analysis of young and old mouse HSCs (Lin–Sca-1+c-Kit+150+CD48– )
Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells.
No sample metadata fields
View SamplesGene expression on peripheral blood mononuclear cells (PBMC) from SPARKS CHARMS juvenile idiopathic arthritis (JIA) cohort pre and post methotrexate therapy. This is the first study to our knowledge, to evaluate gene expression profiles in children with JIA before and after MTX, and to analyze genetic variation in differentially expressed genes. We have identified a gene, which may contribute to genetic variability in MTX response in JIA.
Generation of novel pharmacogenomic candidates in response to methotrexate in juvenile idiopathic arthritis: correlation between gene expression and genotype.
Specimen part, Treatment, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide analysis shows that Ldb1 controls essential hematopoietic genes/pathways in mouse early development and reveals novel players in hematopoiesis.
Specimen part
View Samples