In order to understand the underlying mechanisms, which ensure that disease progression is prevented in EC, a comprehensive analysis of clinical phenotypes coupled to genetics and biomolecular mechanisms is required. The rapidly increasing accessibility of genetic and biomolecular expression data from new high-throughput technologies is the foundation to shift the traditional phenotype-first approach to explorative genetic or molecular data-first approaches. In this study, we aimed to explore a comprehensive analysis of host transcriptomics and proteomics data coupled to clinical phenotypes in a well-defined Swedish EC cohort with up to 20 years of clinical follow-up data.
Transcriptomics and Targeted Proteomics Analysis to Gain Insights Into the Immune-control Mechanisms of HIV-1 Infected Elite Controllers.
Sex, Age, Specimen part, Disease, Treatment, Race
View SamplesTristetraprolin (TTP, encoded by Zfp36) regulates the mRNA stability of several important cytokines. Due to the critical role of this RNA-binding protein in the control of inflammation, TTP deficiency leads to the spontaneous development of a complex inflammatory syndrome. So far, this phenotype has been largely attributed to dysregulated production of TNF and IL-23 by myeloid cells such as macrophages or dendritic cells. Here, we generated mice with conditional deletion of TTP in keratinocytes. These mice developed exacerbated inflammation in the imiquimod-induced psoriasis model. Furthermore, these mice progressively developed a spontaneous pathology with systemic inflammation, psoriatic-like skin lesions and dactylitis. Finally, we provide evidence that keratinocyte-derived TNF productin drives the different pathological features. In summary, these findings expand current views on the initiation of psoriasis and related arthritis by revealing the keratinocyte-intrinsic role of TTP.
Tristetraprolin expression by keratinocytes controls local and systemic inflammation.
Specimen part, Treatment
View SamplesDifferent osteoprogenitors (SSC, BCSP, Thy+) were sorted after 2 days of JUN induction, followed by RNA extraction and microarray analysis
Expansion of Bone Precursors through Jun as a Novel Treatment for Osteoporosis-Associated Fractures.
Specimen part
View SamplesGerm plasm, the Balbiani body and nuage are evolutionary conserved structures essential for germ cell specification and maintenance. We describe Tdrd6a as a component of these structures with two distinct molecular functions. First, Tdrd6a facilitates the accumulation of the typical antisense-bias of piRNAs, without having effects on piRNA biogenesis signatures. Second, we show that Tdrd6a is required for Balbiani body and germ plasm integrity, and associates with RNA-binding proteins and germ plasm mRNAs. On the cell-biological level, maternally contributed Tdrd6a strongly impacts germ cell formation, but is dispensable for fertility. Using single-cell RNA-sequencing we demonstrate that Tdrd6a promotes early germ cell development and regulates the stoichiometry of germ plasm mRNAs. We propose that Tdrd6a functions as a scaffold to recruit correct ratios of germ plasm transcripts and to accumulate antisense piRNA complexes in order to ensure both specification and maintenance of germ cells. Overall design: Single cell were sorted directly in Trizolfrom embryos spawned by mz tdrd6a-/- mother and wt mother carrying a kop::egfp-f-nos1-3'UTR transgene. Thereafter single cell trizol extractio was performed followed by RT, IVT and RNA-seq library prep.
Tdrd6a Regulates the Aggregation of Buc into Functional Subcellular Compartments that Drive Germ Cell Specification.
Cell line, Subject
View SamplesT-cell acute lymphoblastic leukemia (T-ALL) is an immature hematopoietic malignancy driven mainly by oncogenic activation of NOTCH1 signaling. In this study we used a mouse model of T-ALL through the overexpression of the intarcellular transcriptionally active part of Notch1 (N1-IC). This model faithfully recapitulates the major characteristics of the human disease. Comparison of the leukemic cells from peripheral tumors(thymoma) of this mouse model to normal thymic cells Double Positive (DP) for the markers CD4 and CD8 that express very low levels of Notch1 showed major expression changes in pathways controlling the transition from physiology to disease. Further correlation of the data to ChIP-Seq data from the same cell populations led us to identify a hitherto unknown antagonism of the Notch1 oncogenic pathway and the polycomb complex (PRC2) in leukemia. Importantly exome sequencing in primary samples from human patients with T-ALL revealed that the PRC2 complex is frequently mutated and inactivated, further supporting the tumor suppressor role of the complex in this disease.
Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia.
Specimen part, Disease
View SamplesNeuroendocrine tumors (NETs) often harbor loss-of-function mutations in Daxx gene. Daxx interacts with several partners to regulate cellular processes and gene expression.
Menin and Daxx Interact to Suppress Neuroendocrine Tumors through Epigenetic Control of the Membrane Metallo-Endopeptidase.
Specimen part
View SamplesMultiple endocrine neoplasia type1 (MEN1), an inherited autosomal dominant syndrome characterized by the development of endocrine tumors including NETs, results from mutation in the MEN1 gene that encodes the protein menin. In mouse models, heterozygous loss of Men1 leads to multiple endocrine tumors with loss of heterozygocity at the Men1 locus. Men1 interacts with several partners to regulate cellular processes and gene expression through regulating histone modification.
Menin and Daxx Interact to Suppress Neuroendocrine Tumors through Epigenetic Control of the Membrane Metallo-Endopeptidase.
Specimen part
View SamplesTo probe the tissue source (cancer cell VS stromal cell) of gene expression in the mixed tumor samples, we took advantage of a set of Urothelial Cancer patient-derived xenograft (PDX) models given that the transcriptome in these models is a mixture of human RNA (derived from cancer cells) and mouse RNA (derived from stromal cells). Overall design: The cohort includes 5 different patient-derived PDX models, 3 replicates for each model, and thus a total of 15 samples
EMT- and stroma-related gene expression and resistance to PD-1 blockade in urothelial cancer.
Subject
View SamplesCurrent pipelines used to map genetrap insertion sites are based on inverse- or splinkerette-PCR methods, which despite their efficacy are prone to artifacts and do not provide information on the impact of the genetrap on the expression of the targeted gene. We developed a new method, which we named TrapSeq, for the mapping of genetrap insertions based on paired-end RNA sequencing. By recognizing chimeric mRNAs containing genetrap sequences spliced to an endogenous exon, our method identifies insertions that lead to productive trapping. Overall design: We conducted two independent screenings for sensitivity against 6-thioguanine (6TG) and an ATR inhibitor (ATRi). We applied our RNAseq-based pipeline (TrapSeq) to identify mutations that provide resistance to these reagents. Importantly, and besides its use for screenings, when applied to individual clones our method provides a fast and cost-effective way that not only identifies the insertion site of the genetrap but also reveals the impact of the insertion on the expression of the trapped gene. Please note that HAP1, haploid for all chromosomes, derives from near-haploid KBM7 parent line which was in turn obtained from a chronic myeloid leukemia patient in blast crisis phase (Carette et al. Nature 477:340-343, 2011).
Trap<sup>Seq</sup>: An RNA Sequencing-Based Pipeline for the Identification of Gene-Trap Insertions in Mammalian Cells.
Specimen part, Cell line, Subject
View SamplesWe applied a 5''RNA-seq methodology to assess gene and differential isoform expression in striated muscle tissues extracted from adult wild-type mice. Overall design: 5''RNA-seq analysis of transcriptomes from mouse soleus, tibialis anterior (TA), diaphragm and left ventricle myocardial tissues. Three biological replicates per tissue were pooled into a single sequencing run. 5''RNA-seq methodology consists of enhanced sequencing of 5'' ends and computational assessment of changes at start-sites of genes.
Tropomodulin 1 directly controls thin filament length in both wild-type and tropomodulin 4-deficient skeletal muscle.
Sex, Specimen part, Cell line, Subject
View Samples