Glucocorticoid resistance (GCR) is defined as an unresponsiveness to the anti-inflammatory properties of glucocorticoids (GCs) and their receptor, the glucocorticoid receptor (GR). It is a serious problem in the management of inflammatory diseases and occurs frequently. The strong pro-inflammatory cytokine TNF induces an acute form of GCR, not only in mice, but also in several cell lines, e.g. in the hepatoma cell line BWTG3, as evidenced by impaired Dexamethasone (Dex)-induced GR-dependent gene expression. We report that TNF has a significant and broad impact on the transcriptional performance of GR, but no impact on nuclear translocation, dimerization or DNA binding capacity of GR. Proteome-wide proximity-mapping (BioID), however, revealed that the GR interactome is strongly modulated by TNF. One GR cofactor that interacts significantly less with the receptor under GCR conditions is p300. NF?B activation and p300 knockdown both reduce transcriptional output of GR, whereas p300 overexpression and NF?B inhibition revert TNF-induced GCR, which is in support of a cofactor reshuffle model. This hypothesis is supported by FRET studies. This mechanism of GCR opens new avenues for therapeutic interventions in GCR diseases Overall design: Examination of GR induced gene expression in 4 conditions (1 control: NI and 3 treated: DEX, TNF, TNFDEX) starting from 3 biological replicates
TNF-α inhibits glucocorticoid receptor-induced gene expression by reshaping the GR nuclear cofactor profile.
Specimen part, Cell line, Treatment, Subject
View SamplesPurpose: To evaluate the presence of a gene expression signature present before treatment as predictive of response to treatment with MAGEA3
Predictive gene signature in MAGE-A3 antigen-specific cancer immunotherapy.
Specimen part
View SamplesLMO2 overexpressing transgenic mouse models suggest an accumulation of immature T-cell progenitors in the thymus as main pre-leukemic event. The effects of LMO2 overexpression on human T-cell development in vivo, however, are unknown. Here we report studies of a humanized mouse model transplanted with LMO2 transduced human hematopoietic stem and progenitor cells. The effects of LMO2 overexpression were confined to the T-cell lineage although initially multipotent cells were transduced. Three effects of LMO2 on human T-cell development were observed: 1) a block at the DN/ISP stage, 2) an accumulation of CD4+CD8+ double positive CD3- cells and 3) an altered CD8/CD4 ratio with enhanced peripheral T lymphocytes
Overexpression of LMO2 causes aberrant human T-Cell development in vivo by three potentially distinct cellular mechanisms.
Specimen part
View SamplesPurpose: Identify zebrafish microglia transcriptome in the healthy and neurodegenerative brain. Methods: RNA sequencing was performed on FACS-sorted microglia (3x), other brain cells (3x) and activated microglia (4x). Microglia activation was induced using nitroreductase-mediated cell ablation. 10-20 million reads per sample were obtained. Reads were mapped to zebrafish genome GRC10. Results: We identified the zebrafish microglia transcriptome, which shows overlap with previously identified mouse microglia transcriptomes. Transcriptomes obtained 24h and 48h after treatment appeared highly similar. Therefore, these datasets were pooled. Additionally, we identified an acute proliferative response of microglia to induced neuronal cell death. Overall design: Zebrafish microglia transcriptomes of homeostatic microglia (triplicate), other brain cells (triplicate), activated microglia 24h (duplo), activated microglia 48h (duplo). In data analysis all activated microglia samples were pooled.
Identification of a conserved and acute neurodegeneration-specific microglial transcriptome in the zebrafish.
No sample metadata fields
View SamplesAging is a key factor in Alzheimer''s disease, but it''s correlation with the pathology and pathological factors like amyloid-beta remains unclear In our study we aimed to provide an extensive characterisation of age-related changes in the gene expression profile of APP23 mice and controls and correlate these changes to pathological and symptomatic features of the model We found a clear biphasic expression profile with a developmental and aging phase. The second phase, particularly, displays aging features and similarties with the progression of Alzheimer pathology in human patients Processes involved in microglial activation, lysosomal processing, neuronal differantion and cytoskeletal regulation appear key factors in this stage. Interestingly, the changes in the gene expression profile of APP23 mice also seem to occur in control animals, but at a later age. The changes appear accelerated and/or exacerbated in APP23 mice. Overall design: mRNA profiles of APP23 mice and wild-type control littermates aged 1.5, 6, 18 or 24 months. For all the age groups, samples of 3 mice of each genotype were analyzed
Aging, microglia and cytoskeletal regulation are key factors in the pathological evolution of the APP23 mouse model for Alzheimer's disease.
Age, Specimen part, Subject
View SamplesComparison of normal neuroblasts with malignant neuroblastomas (low- and high-stage)
Human fetal neuroblast and neuroblastoma transcriptome analysis confirms neuroblast origin and highlights neuroblastoma candidate genes.
Sex, Specimen part, Disease, Disease stage, Subject
View SamplesHuman mesenchymal stem cells (MSC) derived from perirenal adipose tissue (PV) of living kidney donors were cultured under various conditions, namely (1) control (medium+foetal bovine serum(FBS)) or (2) control (medium+heat-inactivated FBS); (3) with mixed-lympohocyte reactions (MLR) in transwell culture systems for 4 days; (4) with mixed-lympohocyte reactions (MLR) in transwell culture systems for 7 days; or (5)with pro-inflammatory cytokines(IFNgamma, TNFalpha and interleukin 6).
Inflammatory conditions affect gene expression and function of human adipose tissue-derived mesenchymal stem cells.
No sample metadata fields
View SamplesJoMa1 cells are pluripotent precursor cells, derived from the neural crest of mice transgenic for tamoxifen-inducible c-Myc. Following transfection with a cDNA encoding for MYCN, cells become immortlized even in the absence of tamoxifen.
MYCN and ALKF1174L are sufficient to drive neuroblastoma development from neural crest progenitor cells.
Specimen part, Cell line
View SamplesNeuroblastoma is an embryonal tumor arising from the neural crest. It can be mimicked in mice by neural crest-specific overepxression of oncogenes such as MYCN or mutated ALK.
Targeted expression of mutated ALK induces neuroblastoma in transgenic mice.
Specimen part
View SamplesCytotoxic T cells confer a prognostic benefit in many tumors, including ovarian cancer. We and others have previously identified a subset of CD8+ T cells, namely CD103+CD8+ T cells, that seems to have a better prognostic effect. The aim of this study is to identify how these CD103+ T cells differ from CD103-CD8+ T cells on mRNA level in human samples of ovarian cancer. Overall design: mRNA profiles of 10 pools of 20 cells CD103+CD8+, 10 pools of 20 cells CD103-CD8+, 20 single-cells CD103+CD8+, 20 single-cells CD103-CD8+ were generated from TILs of 3 ovarian cancers (high-grade serous ovarian cancer) by SMARTseq2
A Transcriptionally Distinct CXCL13<sup>+</sup>CD103<sup>+</sup>CD8<sup>+</sup> T-cell Population Is Associated with B-cell Recruitment and Neoantigen Load in Human Cancer.
Subject
View Samples