Rat small intestine precision cut slices were exposed for 6 hours to in vitro digested yellow (YOd) and white onion extracts (WOd) that was followed by transcriptomics analysis. The digestion was performed to mimic the digestion that in vivo takes place in the stomach and small intestine. The transcriptomics response of the rat small intestine precision cut slices was compared to that of human Caco-2 cells and the pig in-situ small intestinal segment perfusion. The microarray data for the human Caco-2 cells (GSE83893) and the pig in-situ small intestinal segment perfusion (GSE83908) have been submitted separately from the current data on rat intestine. The goal was to obtain more insight into to which extent mode of actions depend on the experimental model. A main outcome was that each of the three models pointed to the same mode of action: induction of oxidative stress and particularly the Keap1-Nrf2 pathway.
Effects of Digested Onion Extracts on Intestinal Gene Expression: An Interspecies Comparison Using Different Intestine Models.
Sex, Age, Specimen part
View SamplesBackground: Human intestinal tissue samples are barely accessible to study potential health benefits of nutritional compounds. Numbers of animals used in animal trials, however, need to be minimalized. Therefore, in this study we explored the applicability of an in vitro model, namely human intestinal Caco-2 cells, to study the effect of food compounds on (intestinal) health. In vitro digested yellow (YOd) and white onion extracts (WOd) were used as model food compounds and transcriptomics was applied to obtain more insight into their mode of actions in the intestinal cells. Methods: Caco-2 cells were incubated with in vitro digested onion extracts for 6 hours, total RNA was extracted and Affymterix Human Gene 1.1 ST arrays were used to analyze the gene expression profiles. To identify onion-induced gene expression profiles in Caco-2 cells, digested yellow onion and white onion samples were compared to a digest control samples. Results: We found that yellow onion (n=5586, p<0.05) had a more pronounced effect on gene expression than white onion (n=3688, p<0.05). However, a substantial number of genes (n=3281, p<0.05) were affected by both onion variants in the same direction. Pathway analyses revealed that mainly processes related to oxidative stress, and especially the Keap1-Nrf2 pathway, were affected by onions. Our data fit with previous in vivo studies showing that the beneficial effects of onions are mostly linked to their antioxidant properties. Conclusion: our data indicate that the in vitro Caco-2 intestinal model can be used to determine modes of action of nutritional compounds and can thereby reduce the number of animals used in conventional nutritional intervention studies.
Effects of Digested Onion Extracts on Intestinal Gene Expression: An Interspecies Comparison Using Different Intestine Models.
Cell line
View SamplesLifelong murine gene expression profiles in relation to chronological and biological aging in multiple organs
Life spanning murine gene expression profiles in relation to chronological and pathological aging in multiple organs.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Plant cysteine oxidases control the oxygen-dependent branch of the N-end-rule pathway.
Age, Specimen part, Treatment
View SamplesThe effect of the overexpression of Plant Cysteine Oxidase (PDCO1) on the transcriptome of Arabidopsis resettes was investigated with plants subjected to a 4h hypoxia (5% O2 v/v in air). For this purpose, 4-week old rosette of wild-type and 35S:FLAG:CDO1 plants were compared. Samples were composed of pools of 5 plants.
Plant cysteine oxidases control the oxygen-dependent branch of the N-end-rule pathway.
Age, Specimen part
View SamplesThe effect of the overexpression of Plant Cysteine Oxidase (PCO1) on the transcriptome of Arabidopsis resettes was investigated. For this purpose, 4-week old rosette of wild-type and 35S:FLAG:CDO1 plants were compared. Samples were composed of a pool of 5 plants.
Plant cysteine oxidases control the oxygen-dependent branch of the N-end-rule pathway.
Age, Specimen part, Treatment
View SamplesTreatment of hematological malignancies by adoptive transfer of activated natural killer (NK) cells is limited by poor post-infusion persistence. We compared the ability of interleukin-2 (IL-2) and IL-15 to sustain human NK cell functions following cytokine withdrawal to model post-infusion performance. In contrasts to IL-2, IL-15 mediated stronger signaling through the IL-2/15 receptor complex and provided functional advantages. Genome-wide analysis of cytosolic and polysome-associated mRNA revealed cytokine dependent differential mRNA levels and translation during cytokine activation but also that most gene expression differences were primed by IL-15 and only manifested after cytokine withdrawal. IL-15 augmented mTOR signaling, which correlated with increased expression of genes related to cell metabolism and respiration. Consistently, mTOR inhibition abrogated IL-15-induced functional advantages. Moreover, mTOR-independent STAT-5 signaling contributed to improved NK cell function during cytokine activation but not following cytokine withdrawal. The superior performance of IL-15 stimulated NK cells was also observed using a clinically applicable protocol for NK cell expansion. Finally, expression of IL-15 correlated with cytolytic immune functions in patients with B cell lymphoma and favorable clinical outcome. These findings highlight the importance of mTOR regulated metabolic processes for immune cell functions and argue for implementation of IL-15 in adoptive NK cell cancer therapy. Overall design: Freshly isolated NK cells from 6 donors were activated with IL-2 or IL-15 for 48 hours, followed by cytokine withdrawal for 24 hours, resulting in four RNA samples per donor. From each sample, both the cytosolic as well as the polysomal fraction were collected. Donor 3 contains activation and post withdrawal data from two different donors due to poor RNA-quality obtained for some samples which did not allow for processing of the complete set of 6 donors (resulting in a total of 40 samples).
IL-15 activates mTOR and primes stress-activated gene expression leading to prolonged antitumor capacity of NK cells.
No sample metadata fields
View SamplesHuntingtons disease (HD) is a devastating disease for which currently no therapy is available. It is a progressive autosomal dominant neurodegenerative disorder that is caused by a CAG repeat expansion in the HD gene, resulting in an expansion of polyglutamines at the N-terminal end of the encoded protein, designated huntingtin, and the accumulation of cytoplasmic and nuclear aggregates. Not only is there a loss of normal huntingtin function, upon expansion of the CAG repeat there is also a gain of toxic function of the huntingtin protein and this affects a wide range of cellular processes. To identify groups of genes that could play a role in the pathology of Huntingtons disease, we studied mRNA changes in an inducible PC12 model of Huntingtons disease before and after aggregates became visible. This is the first study to show the involvement Nrf2-responsive genes in the oxidative stress response in HD. Oxidative stress related transcripts were altered in expression suggesting a protective response in cells expressing mutant huntingtin at an early stage of cellular pathology. Furthermore, there was a down-regulation of catecholamine biosynthesis resulting in lower dopamine levels in culture. Our results further demonstrate an early impairment of transcription, the cytoskeleton, ion channels and receptors. Given the pathogenic impact of oxidative stress and neuroinflammation, the Nrf2-ARE signaling pathway is an attractive therapeutic target for neurodegenerative diseases.
Mutant huntingtin activates Nrf2-responsive genes and impairs dopamine synthesis in a PC12 model of Huntington's disease.
No sample metadata fields
View SamplesSelenate is chemically similar to sulfate and can be taken up and assimilated by plants via the same transporters and enzymes. In contrast to many other organisms, selenium (Se) has not been shown to be essential for higher plants. In excess, Se is toxic and restricts development. Both Se deficiency and toxicity pose problems worldwide. To obtain better insight into the effects of Se on plant metabolism and into plant mechanisms involved in Se tolerance, the transcriptome of Arabidopsis plants grown with or without selenate was studied, and Se-responsive genes identified. Roots and shoots exhibited different Se-related changes in gene regulation and metabolism. Many genes involved in sulfur (S) uptake and assimilation were upregulated. Accordingly, Se treatment enhanced sulfate levels in plants, but the quantity of organic S metabolites decreased. Transcripts regulating the synthesis and signaling of ethylene and jasmonic acid were also upregulated by Se. Selenate appeared to repress plant development, as suggested by the down-regulation of genes involved in cell wall synthesis and auxin-regulated proteins. The Se-responsive genes discovered in this study may help create plants that can better tolerate and accumulate Se, which may enhance the effectiveness of Se phytoremediation or serve as Se-fortified food.
Transcriptome analyses give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide promoter methylation analysis in neuroblastoma identifies prognostic methylation biomarkers.
Treatment
View Samples