Background: Strategies to improve long term renal allograft survival have been directed to recipient dependent mechanisms of renal allograft injury. In contrast, no such efforts have been made to optimize organ quality in the donor. In order to get insight into the deleterious gene pathways expressed at different time points during deceased kidney transplantation, transcriptomics was performed on kidney biopsies from a large cohort of deceased kidney transplants.
Hypoxia and Complement-and-Coagulation Pathways in the Deceased Organ Donor as the Major Target for Intervention to Improve Renal Allograft Outcome.
Specimen part
View SamplesSystems biology has the potential to identify gene signatures associated with vaccine immunogenicity or protective efficacy. The main objective of our study was to identify optimal post-vaccination time points for evaluating blood RNA-expression profiles in recipients of the candidate tuberculosis vaccine M72/AS01. In this phase II open-label study (NCT01669096), healthy Bacillus Calmette-Gurin (BCG)-primed, HIV-negative adults were administered two doses (30-days apart) of M72/AS01. Blood samples were collected pre-dose 1, pre-dose 2 and 1, 7, 10, 14, 17 and 30 days post-dose 2. RNA expression in blood and peripheral-blood mononuclear cells (PBMCs) was quantified using microarray technology. The data analysis used as a reference, a PBMC-gene signature that was associated with the protective efficacy of a similarly adjuvanted candidate malaria vaccine. Peripheral-blood CD4+ T-cell reactivity, serum interferon-gamma (IFNG) concentrations and safety were also assessed. Twenty subjects completed the study and 18 subjects received two doses. The observed safety profile was similar to previous trials. Serum IFNG responses and M72-specific CD4+ T cell responses to vaccination were detected as expected, based on previous trial experience. PBMC and whole-blood RNA-expression data at day 14 post-dose 2 relative to pre-vaccination and whole-blood RNA-expression data at 7, 10, and 17 days post-dose 2 relative to pre-vaccination could be used to classify vaccine recipients into gene-signature positive or gene-signature negative groups. In conclusion, whole blood sampled from the 7, 10, 14, or 17 day post-vaccination time points, in addition to pre-vaccination, could be selected to assess potentially clinically relevant responses to M72/AS01 using transcriptome analysis.
Adjuvant-Associated Peripheral Blood mRNA Profiles and Kinetics Induced by the Adjuvanted Recombinant Protein Candidate Tuberculosis Vaccine M72/AS01 in Bacillus Calmette-Guérin-Vaccinated Adults.
Specimen part, Subject
View SamplesWe applied a systems biology approach to study immune responses in subjects receiving 3 consecutive immunizations with RTS,S/AS01 (RRR), or in those receiving 2 immunizations of RTS,S/AS01, following a primary immunization with adenoviral Ad35 (ARR) vector expressing circumsporozoite protein.
Systems analysis of protective immune responses to RTS,S malaria vaccination in humans.
Specimen part, Disease stage, Subject, Time
View SamplesThe gut microbiota has been implicated in obesity and cardiometabolic diseases, although evidence in humans is scarce. We investigated how gut microbiota manipulation by antibiotics (7-day administration of amoxicillin, vancomycin, or placebo) affects host metabolism in 57 obese, prediabetic men. Vancomycin, but not amoxicillin, decreased bacterial diversity and reduced Firmicutes involved in short-chain fatty acid and bile acid metabolism, concomitant with altered plasma and/or fecal metabolite concentrations. Adipose tissue gene expression of oxidative pathways was upregulated by antibiotics, whereas immune-related pathways were downregulated by vancomycin. Antibiotics did not affect tissue-specific insulin sensitivity, energy/substrate metabolism, postprandial hormones and metabolites, systemic inflammation, gut permeability, and adipocyte size. Importantly, energy harvest, adipocyte size, and whole-body insulin sensitivity were not altered at 8-week follow-up, despite a still considerably altered microbial composition, indicating that interference with adult microbiota by 7-day antibiotic treatment has no clinically relevant impact on metabolic health in obese humans.
Effects of Gut Microbiota Manipulation by Antibiotics on Host Metabolism in Obese Humans: A Randomized Double-Blind Placebo-Controlled Trial.
Sex, Specimen part, Disease, Disease stage, Treatment, Subject, Time
View SamplesAlmost a quarter of pediatric patients with Acute Lymphoblastic Leukemia (ALL) suffer from relapses. The biological mechanisms underlying therapy response and development of relapses have remained unclear. In an attempt to better understand this phenomenon, we have analyzed 41 matched diagnosis relapse pairs of ALL patients using genomewide expression arrays (82 arrays) on purified leukemic cells. In roughly half of the patients very few differences between diagnosis and relapse samples were found (stable group), suggesting that mostly extra-leukemic factors (e.g., drug distribution, drug metabolism, compliance) contributed to the relapse. Therefore, we focused our further analysis on 20 samples with clear differences in gene expression (skewed group), reasoning that these would allow us to better study the biological mechanisms underlying relapsed ALL. After finding the differences between diagnosis and relapse pairs in this group, we identified four major gene clusters corresponding to several pathways associated with changes in cell cycle, DNA replication, recombination and repair, as well as B cell developmental genes. We also identified cancer genes commonly associated with colon carcinomas and ubiquitination to be upregulated in relapsed ALL. Thus, about half of relapses are due to selection or emergence of a clone with deregulated expression of a genes involved in pathways that regulate B cell signaling, development, cell cycle, cellular division and replication.
Genome-wide expression analysis of paired diagnosis-relapse samples in ALL indicates involvement of pathways related to DNA replication, cell cycle and DNA repair, independent of immune phenotype.
Sex, Specimen part, Disease
View SamplesBackground and Purpose—Analyzing genes involved in development and rupture of intracranial aneurysms can enhance knowledge about the pathogenesis of aneurysms, and identify new treatment strategies. We compared gene expression between ruptured and unruptured aneurysms and control intracranial arteries. Methods—We determined expression levels with RNA sequencing. Applying a multivariate negative binomial model, we identified genes that were differentially expressed between 44 aneurysms and 16 control arteries, and between 22 ruptured and 21 unruptured aneurysms. The differential expression of 8 relevant and highly significant genes was validated using digital polymerase chain reaction. Pathway analysis was used to identify enriched pathways. We also analyzed genes with an extreme pattern of differential expression: only expressed in 1 condition without any expression in the other. Results—We found 229 differentially expressed genes in aneurysms versus controls and 1489 in ruptured versus unruptured aneurysms. The differential expression of all 8 genes selected for digital polymerase chain reaction validation was confirmed. Extracellular matrix pathways were enriched in aneurysms versus controls, whereas pathways involved in immune response and the lysosome pathway were enriched in ruptured versus unruptured aneurysms. Immunoglobulin genes were expressed in aneurysms, but showed no expression in controls. Conclusions—For rupture of intracranial aneurysms, we identified the lysosome pathway as a new pathway and found further evidence for the role of the immune response. Our results also point toward a role for immunoglobulins in the pathogenesis of aneurysms. Immune-modifying drugs are, therefore, interesting candidate treatment strategies in the prevention of aneurysm development and rupture. Overall design: RNA sequencing of 44 intracranial aneurysm samples (including 21 unruptured, 22 ruptured and 1 undetermined) and 16 control samples of the intracranial cortical artery
RNA Sequencing Analysis of Intracranial Aneurysm Walls Reveals Involvement of Lysosomes and Immunoglobulins in Rupture.
Sex, Age, Subject
View SamplesColon cancer is a major cause of cancer deaths in Western countries and is associated with diets high in red meat. Heme, the iron-porphyrin pigment of red meat, induces cytotoxicity of gut contents which injures surface cells leading to compensatory hyperproliferation of crypt cells. This hyperproliferation results in epithelial hyperplasia which increases the risk of colon cancer. In humans, a high red-meat diet increases Bacteroides spp in feces. Therefore, we simultaneously investigated the effects of dietary heme on colonic microbiota and on the host mucosa of mice. Whole genome microarrays showed that heme injured the colonic surface epithelium and induced hyperproliferation by changing the surface to crypt signaling. Using 16S rRNA phylogenetic microarrays, we investigated whether bacteria play a role in this changed signaling. Heme increased Bacteroidetes and decreased Firmicutes in colonic contents. This shift was most likely caused by a selective susceptibility of Gram-positive bacteria to heme cytotoxic fecal water, which is not observed for Gram-negative bacteria, allowing expansion of the Gram-negative community. The increased amount of Gram-negative bacteria most probably increased LPS exposure to colonocytes, however, there is no appreciable immune response detected in the heme-fed mice. There was no functional change in the sensing of the bacteria by the mucosa, as changes in inflammation pathways and Toll- like receptor signaling were not detected. This unaltered host-microbe cross-talk indicates that the changes in microbiota did not play a causal role in the observed hyperproliferation and hyperplasia.
Dietary heme alters microbiota and mucosa of mouse colon without functional changes in host-microbe cross-talk.
Sex, Age, Specimen part
View SamplesPreviously, we showed that dietary heme injured the colonic surface epithelium and induced hyperproliferation by changing the surface to crypt signaling. In this study we investigated whether bacteria play a role in this changed signaling. Dietary heme increased the Bacteroidetes and decreased the Firmicutes in colonic content. This shift was caused by a selective susceptibility of Gram-positive bacteria to the heme cytotoxic fecal waters, which is not observed for Gram-negative bacteria allowing expansion of the Gram-negative community. The increased amount of Gram-negative bacteria increased LPS exposure to colonocytes, however, there is no appreciable immune response detected in the heme-fed mice. There were no signs of sensing of the bacteria by the mucosa, as changes in TLR signaling were not present. This lack of microbe-host cross talk indicated that the changes in microbiota do not play a causal role in the heme-induced hyperproliferation.
Dietary heme alters microbiota and mucosa of mouse colon without functional changes in host-microbe cross-talk.
Sex, Age, Specimen part, Treatment
View SamplesIn order to understand the molecular mechanism behind Vulvar Intraepithelial Neoplasia (VIN), we have analyzed the gene expression profile of VIN lesions in comparison to controls.
HPV related VIN: highly proliferative and diminished responsiveness to extracellular signals.
Sex
View SamplesOculopharyngeal muscular dystrophy (OPMD) is a late-onset progressive muscle disorder caused by a poly-alanine expansion mutation in PABPN1. The hallmark of OPMD is the accumulation of the mutant protein in insoluble nuclear inclusions. The molecular mechanisms associated with disease onset and progression are unknown. We performed a high-throughput cross-species transcriptome study of affected muscles from two OPMD animal models and from patients at pre-symptomatic and symptomatic stages. The most consistently and significantly OPMD-deregulated pathway across species is the ubiquitin-proteasome system (UPS). By analyzing expression profiles, we found that the majority of OPMD-deregulated genes are age-associated. Based on expression trends, disease onset can be separated from progression; the expression profiles of the proteasome-encoding genes are associated with onset but not with progression. In a muscle cell model, proteasome inhibition and the stimulation of immunoproteasome specifically affect the accumulation and aggregation of mutant PABPN1. We suggest that proteasome down-regulation during muscle aging triggers the accumulation of expPABPN1 that in turn enhances proteasome deregulation and leads to intranuclear inclusions (INI) formation.
Deregulation of the ubiquitin-proteasome system is the predominant molecular pathology in OPMD animal models and patients.
Sex, Age, Disease, Disease stage
View Samples