Developmental exposure of mouse fetuses to estrogens results in dose-dependent permanent effects on prostate morphology and function. Fetal prostatic mesenchyme cells express estrogen receptor alpha (ER) and androgen receptors and convert stimuli from estrogens and androgens into signaling to regulate epithelial cell proliferation and differentiation. To obtain mechanistic insight into the role of different doses of estradiol (E2) in regulating mesenchymal cells, we examined E2-induced transcriptomal changes in primary cultures of fetal mouse prostate mesenchymal cells. Urogenital sinus mesenchyme cells were obtained from male mouse fetuses at gestation day 17 and exposed to 10 pM, 100 pM or 100 nM E2 in the presence of a physiological concentration of dihydrotestosterone (0.69 nM) for four days. Gene ontology studies suggested that low doses of E2 (10 pM and 100 pM) induce genes involved in cell adhesion, morphological tissue development, and sterol biosynthesis but suppress genes involved in growth factor signaling and cell adhesion. Genes showing inverted-U-shape dose responses (enhanced by E2 at 10 pM E2 but suppressed at 100 pM) were identified, and their enrichment in the glycolytic pathway was demonstrated. At the highest dose (100 nM), E2 induced genes enriched not only for cell adhesion but also steroid hormone signaling and metabolism, cytokines and their receptors, cell-to-cell communication, Wnt signaling, and TGF- signaling. These results suggest that prostate mesenchymal cells may regulate epithelial cells through direct cell contacts when estrogen level is low whereas soluble growth factors might play significant roles when estrogen level is high.
Dose-related estrogen effects on gene expression in fetal mouse prostate mesenchymal cells.
Sex, Specimen part
View SamplesDevelopmental estrogen exposure causes permanent alterations to mouse prostate development. Fetal prostatic mesenchyme cells regulate epithelial cell proliferation and differentiation, and alterations to mesenchymal regulation of prostate epithelial cell proliferation and differentiation may lead to permanent changes in gland structure and function. Our goal was to understand how mesenchymal cells convert estrogen signaling to stimuli that affect epithelial cells. We used microarrays to identify estrogen-induced transcriptomal changes in primary cultures of fetal mouse prostate mesenchymal cells.
Dose-related estrogen effects on gene expression in fetal mouse prostate mesenchymal cells.
Sex, Specimen part, Treatment
View SamplesRNA sequencing was performed on intestinal mucosa from male and female Slfn3KO mice to determine gene expression changes related to decreased weight gain in the Slfn3KO mice Overall design: 4 sample groups: Male wildtype and Slfn3KO, Female wildtype and Slfn3KO
Loss of Schlafen3 influences the expression levels of Schlafen family members in ileum, thymus, and spleen tissue.
Sex, Age, Specimen part, Subject
View SamplesWe used microarrays to detect the differences in gene-expression of the periontal ligament between patients with healthy periodontal ligament and patients with periodontitis
The pathology of bone tissue during peri-implantitis.
Specimen part
View SamplesIn this study we want to ascertain the differences and similarities of infected and inflammated peri implant tissue versus healthy peri implant tissue at the mRNA level.
The pathology of bone tissue during peri-implantitis.
Specimen part, Disease, Disease stage
View SamplesAdipose tissue iNKT cells have different functions than iNKT cells in the blood and other organs.
Regulatory iNKT cells lack expression of the transcription factor PLZF and control the homeostasis of T(reg) cells and macrophages in adipose tissue.
Age, Specimen part
View SamplesWe sequenced total RNAs that were extracted from Osr1-expressing cells isolated by FACS-sorting from E13.5 limbs of two heterozygous (Osr1 GCE/+) and two homozygous (Osr1 GCE/GCE) mouse embryos. Overall design: Gene expression profiling of Osr1-expressing cells at E13.5
Odd skipped-related 1 identifies a population of embryonic fibro-adipogenic progenitors regulating myogenesis during limb development.
Specimen part, Cell line, Subject
View SamplesNeuronal function critically depends on coordinated subcellular distribution of mRNAs. Disturbed mRNA processing and axonal transport has been found in spinal muscular atrophy and could be causative for dysfunction and degeneration of motoneurons. Despite the advances made in characterizing the transport mechanisms of several axonal mRNAs, an unbiased approach to identify the axonal repertoire of mRNAs in healthy and degenerating motoneurons has been lacking. Here we used compartmentalized microfluidic chambers to investigate the somatodendritic and axonal mRNA content of cultured motoneurons by microarray analysis. In axons, transcripts related to protein synthesis and energy production were enriched relative to the somatodendritic compartment. Knockdown of Smn, the protein deficient in spinal muscular atrophy, produced a large number of transcript alterations in both compartments. Transcripts related to immune functions, including MHC class I genes, and with roles in RNA splicing were upregulated in the somatodendritic compartment. On the axonal side, transcripts associated with axon growth and synaptic activity were downregulated. These alterations provide evidence that subcellular localization of transcripts with axonal functions as well as regulation of specific transcripts with nonautonomous functions is disturbed in Smn-deficient motoneurons, most likely contributing to the pathophysiology of spinal muscular atrophy.
Subcellular transcriptome alterations in a cell culture model of spinal muscular atrophy point to widespread defects in axonal growth and presynaptic differentiation.
Specimen part
View SamplesTranscriptomic analysis of gene expression during the differentiation of cell suspension cultures into tracheary elements using the biological system published by Pesquet et al., Current Biology (2010): tracheary element differentiation was triggered by externally supplying hormone-free habituated cell suspension cultures of Arabidopsis thaliana Col-0 with auxin, cytokinin and epibrassinolides; RNA samples extracted from 3 independent time-courses every 12h from 0h to 4 days were analyzed using ATH1 Arabidopsis Affymetrix micro-array
Proteomic Analysis of Microtubule Interacting Proteins over the Course of Xylem Tracheary Element Formation in Arabidopsis.
Specimen part, Time
View SamplesTo investigate the function of CITED1 in melanoma, its expression was transiently down regulated using CITED1-targeting siRNA. The HT144 melanoma cell line was chosen as it had a relatively high level of detectable CITED1 mRNA and protein expression.
Loss of CITED1, an MITF regulator, drives a phenotype switch in vitro and can predict clinical outcome in primary melanoma tumours.
Cell line
View Samples