Identifying novel candidate biomarker gene differentially expressed in the peripheral blood cells of patients with early stage acute myocardial infarction using microarray as a high throughput screening technology.
Novel genes detected by transcriptional profiling from whole-blood cells in patients with early onset of acute coronary syndrome.
Specimen part, Disease, Time
View SamplesArabidopsis thaliana cell suspension cultures (ACSC) were subjected to 30-min, mild chemical treatments with three different singlet oxygen elicitors at low-medium light conditions (150 E m2 s1) with the aim of getting a better understanding of singlet oxygen-mediated defence responses in plants. The three elicitors Indigo Carmine (IC), Methylene Violet (MV) and Rose Bengal (RB) at a concentration of 0.5 M were chosen because they exhibited different abilities to permeate the plasma membrane and to accumulate in the cell soma or organelles such as chloroplasts. In addition, ACSC were treated with 500 M H2O2 for comparison. Confocal image analysis of Arabidopsis cells revealed that IC was not retained in cells, whereas MV and RB permeated the plasma membrane and accumulated in the chloroplast envelope and inside chloroplasts, respectively. As a consequence of their different cellular location, the physiological, transcriptional and photosynthetic responses of Arabidopsis cells to singlet oxygen production varied from each other and the activation of programmed cell death (PCD) was observed in ACSC treated with 0.5 M RB, but not with the other elicitor nor with 500 M H2O2. The role of chloroplasts in the activation of PCD was further investigated when this physiological response was analyzed in dark-grown cell cultures containing undifferentiated plastids. Interestingly, PCD was only activated in light-grown, but not in dark-grown, Arabidopsis cell cultures, suggesting that singlet oxygen-mediated defence responses were initiated inside chloroplasts. Genome-wide transcriptional profile analyses were performed as well and the results proved that there were only statistically significant changes in the transcript expression of light-grown ACSC treated with 0.5 M RB and 500 M H2O2, but not with IC nor with MV. Functional enrichment analyses revealed that GO/Biological process terms associated with defence responses were common in the treatments with 0.5 M RB and 500 M H2O2; however, resistance response to pathogen and PCD terms were only significantly over-represented in the RB treatment. Moreover, the analysis of the up-regulated transcripts in ACSC treated with 0.5 M RB brought out that both specific markers for singlet oxygen from the conditional fluorescence (flu) mutant of Arabidopsis and transcripts with a key role in hormone-activated PCD (i.e. ethylene and jasmonic acid) were present, although there was no evidence for the up-regulation of EDS1 encoding the ENHANCED DISEASE SUSCEPTIBILITY PROTEIN 1. Finally, a co-regulation analysis proved that ACSC treated with 0.5 M RB exhibited higher correlation with the flu family mutants than with other singlet oxygen producer mutants of Arabidopsis or wild-type plants of Arabidopsis subjected to high light treatments, where singlet oxygen was produced in photosystem II and an acclimatory response was activated instead of PCD.
Programmed cell death activated by Rose Bengal in Arabidopsis thaliana cell suspension cultures requires functional chloroplasts.
Treatment
View SamplesMyotonic dystrophy type 1 (DM1) is caused by the nuclear accumulation of mutant DMPK mRNA containing CUG-repeat expansions, resulting in a trans-dominant effect on RNA processing by sequestration of MBNL1 and activation of CELF1 splicing regulators. Here, we present a comprehensive study of the MBNL1 and CELF1-regulated splicing in the HeLa cell line that may participate in the complex phenotype of the DM1 disease. We have performed human GeneChip Exon array experiments with RNAs extracted from HeLa cells in which MBNL1 or CELF1 were silenced or over-expressed. MBNL1 or CELF1-silenced HeLa cells showed changes in the expression of 170 probe sets (150 genes) and 893 probe sets (613 genes), whereas MBNL1 or CELF1 over-expression on these cells had 812 probe sets (589 genes) and 684 probe sets (531 genes) altered, respectively. In MBNL1-silenced cells we have found and validated by RT-qPCR the exclusion of RASIP1 exon 4 and of KIF13A exon 26 and the inclusion of MBNL2 exon 5. Furthermore, we have found exclusion of LCOR exon 6 and PIP4K2C exon 1, and inclusion TCF12 exon 16, with dependence on the silencing degree of MBNL1, In MBNL1 over-expressed HeLa cells we have found and validated by RT-qPCR a potent inclusion of CD44 exon 8, CD44 exon 11 and the 3UTR of TRAF2. We have then mimicked the misregulation of MBNL1 and CELF1 protein levels of DM1 in HeLa cells, finding new altered splicing events. These alterations were found in genes that encode proteins involved in myoblast differentiation and migration (CD44, RASIP1) and muscle development (TCF12 transcription factor), estrogen and thyroid receptor interactor (LCOR), as well as proteins involved in transduction signaling pathways (PIP4K2C, TRAF2) and intracellular trafficking (KIF13A). These results provide potential contributing genes that could help to explain the complex phenotype of the DM1 disease.
No associated publication
Disease, Cell line
View SamplesObesity-associated insulin resistance is characterized by a state of chronic, low-grade inflammation that is associated with the accumulation of M1 proinflammatory macrophages in adipose tissue. Although different evidence explains the mechanisms linking the expansion of adipose tissue and adipose tissue macrophage (ATM) polarization, in the current study we investigated the concept of lipid-induced toxicity as the pathogenic link that could explain the trigger of this response. We addressed this question using isolated ATMs and adipocytes from genetic and diet-induced murine models of obesity. Through transcriptomic and lipidomic analysis, we created a model integrating transcript and lipid species networks simultaneously occurring in adipocytes and ATMs and their reversibility by thiazolidinedione treatment. We show that polarization of ATMs is associated with lipid accumulation and the consequent formation of foam celllike cells in adipose tissue. Our study reveals that early stages of adipose tissue expansion are characterized by M2-polarized ATMs and that progressive lipid accumulation within ATMs heralds the M1 polarization, a macrophage phenotype associated with severe obesity and insulin resistance. Furthermore, rosiglitazone treatment, which promotes redistribution of lipids toward adipocytes and extends the M2 ATM polarization state, prevents the lipid alterations associated with M1 ATM polarization. Our data indicate that the M1 ATM polarization in obesity might be a macrophage-specific manifestation of a more general lipotoxic pathogenic mechanism. This indicates that strategies to optimize fat deposition and repartitioning toward adipocytes might improve insulin sensitivity by preventing ATM lipotoxicity and M1 polarization.
Differential lipid partitioning between adipocytes and tissue macrophages modulates macrophage lipotoxicity and M2/M1 polarization in obese mice.
Specimen part
View SamplesExpression data from wild type or Gdap1-null Mouse Embryonic Fibroblasts before and 4 days after transduction with the reprogramming factors Oct4, Sox2, Klf4 and cMyc
No associated publication
No sample metadata fields
View SamplesWe have investigated the genomic response of Arabidopsis cell suspension culture under high light. Our main goal has been twofold: first, to establish whether chloroplasts in Arabidopsis cell suspension culture are functional and, as such, can act as sensors of adverse external stimuli leading to the activation of genomic defence responses in a manner similar to that described in whole plants exposed to a wide range of environmental stresses and; second, to distinguish which of the ROS that would be probably generated in the chloroplasts is predominant.
Early transcriptional defense responses in Arabidopsis cell suspension culture under high-light conditions.
Disease
View Samples