Gene expression analysis in cattle embryos derived from mtDNA depleted cells in the presence and absence of Trichostatin A
No associated publication
Sex, Specimen part
View SamplesRotavirus infection is the single most important cause of severe diarrhea in young children worldwide. We used Affymetrix Human U95Av2 high density oligonucleotide arrays to compare gene expression profiles in peripheral blood mononuclear cells (PBMC) of 10 children with acute rotavirus diarrhea and 8 age-matched healthy children. We also examined patterns of gene expression in 5 convalescent-phase PBMC samples from rotavirus patients. For data analysis, we imported .cel files generated by Affymetrix MAS5.0 into Genetraffic 3.1 software (Iobion) and performed robust multi-chip analysis. We considered a gene in patients differentially expressed if its level of expression was at least 1.5-fold higher or lower than the baseline (arithmetic mean) of the corresponding gene in 8 controls and if its pattern of elevated or repressed expression was observed in at least 7 of the 10 patients. Using these criteria, we identified ~1% up- and ~2% down-regulated genes in acute-phase PBMC of patients. Up-regulated genes included those involved in the differentiation, maturation, activation, and survival of B cells, as well as an array of genes with function in inflammatory and antiviral activities. We observed a pattern of repressed expression of a number of genes involved in the various stages of T-cell development and activation. On the basis of these results, we conclude that rotavirus infection induces robust inflammatory response and B-cell activation but represses T-cell response.
Rotavirus infection alters peripheral T-cell homeostasis in children with acute diarrhea.
No sample metadata fields
View SamplesEffect of high fat diet feeding on gene expression
Subtle metabolic and liver gene transcriptional changes underlie diet-induced fatty liver susceptibility in insulin-resistant mice.
Sex, Age, Specimen part, Subject
View SamplesEffects of hyperglycaemia and genetic background differences on gene expression in rats
No associated publication
Sex, Age, Specimen part, Disease, Disease stage, Subject
View SamplesArterial and venous endothelial cells exhibit distinct molecular characteristics at early developmental stages. These lineage-specific molecular programs are instructive to the development of distinct vascular architectures and physiological conditions of arteries and veins, but their roles in angiogenesis remain unexplored. Here, we show that the caudal vein plexus in zebrafish forms by endothelial cell sprouting, migration and anastomosis, providing a venous-specific angiogenesis model. Using this model, we identified a novel compound, aplexone, which effectively suppresses venous, but not arterial, angiogenesis. Multiple lines of evidence indicate that aplexone differentially regulates arteriovenous angiogenesis by targeting the HMG-CoA reductase (HMGCR) pathway. Treatment with aplexone affects the transcription of enzymes in the HMGCR pathway and reduces cellular cholesterol levels. Injecting mevalonate, a metabolic product of HMGCR, reverses the inhibitory effect of aplexone on venous angiogenesis. In addition, aplexone treatment inhibits protein prenylation and blocking the activity of geranylgeranyl transferase induces a venous angiogenesis phenotype resembling that observed in aplexone-treated embryos. Furthermore, endothelial cells of venous origin have higher levels of proteins requiring geranylgeranylation than arterial endothelial cells and inhibiting the activity of Rac or Rho Kinase effectively reduces the migration of venous, but not arterial, endothelial cells. Taken together, our findings indicate that angiogenesis is differentially regulated by the HMGCR pathway via an arteriovenousdependent requirement for protein prenylation in zebrafish and human endothelial cells.
Aplexone Targets the HMG-CoA Reductase Pathway and Differentially Regulates Arteriovenous Angiogenesis
Compound
View SamplesInsulin resistance represents a hallmark during the development of type 2 diabetes mellitus (T2D) and in the pathogenesis of obesity-associated disturbances of glucose and lipid metabolism 1,2,3. MicroRNA (miR)-dependent posttranscriptional gene silencing has recently been recognized to control gene expression in disease development and progression including that of insulin-resistant T2D. MiRs, whose deregulation alters hepatic insulin sensitivity include miR-143, miR-181 and miR-103/107. Here we report that expression of miR-802 is increased in liver of two obese mouse models and of obese human subjects. Inducible transgenic overexpression of miR-802 in mice causes impaired glucose tolerance and attenuates insulin sensitivity, while reduction of miR-802 expression improves glucose tolerance and insulin action. We identify Hnf1b as a target of miR-802-dependent silencing and shRNA-mediated reduction of Hnf1b in liver causes glucose intolerance, impairs insulin signaling and promotes hepatic gluconeogenesis. In turn, hepatic overexpression of Hnf1b improves insulin sensitivity in db/db mice. Thus, the present study defines a critical role for deregulated expression of miR-802 in the development of obesity-associated impairment of glucose metabolism via targeting Hnf1b and assigns Hnf1b an unexpected role in the control of hepatic insulin sensitivity.
Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b.
Sex, Specimen part
View SamplesTo induce a differentiated phenotype, primary pancreatic TIC cultures were grown in 10% FBS containing conditions. To analyze gene expression changes upon induction of a differentiated phenotype, total RNA of cells cultured in FBS containing conditions and parallel control cells cultured under serum-free conditions was isolated and comparative gene expression profiling was performed.
No associated publication
No sample metadata fields
View SamplesIn order to determine the effect of ArhGAP30 on the gene expression profile of colorectal cancer cells, Lovo cells were infected with either ArhGAP30 or the control pcDNA3.1 empty vector.
ArhGAP30 promotes p53 acetylation and function in colorectal cancer.
Cell line
View SamplesTranscriptome analysis of total RNA samples from HEK293-PIGS-KO and HEK293-PIGS-UBE2J1-DKO cells. To check whether KO of UBE2J1 upregulates genes of GPI biosthesis pathway, we used microarrays to analyze gene expression change by KO of UBE2J1 and comfirmed that known GPI pathway genes are not changed by ERAD-deficiency.
Cross-talks of glycosylphosphatidylinositol biosynthesis with glycosphingolipid biosynthesis and ER-associated degradation.
Cell line
View SamplesGenome-wide association studies (GWAS) have identified genes in lipid metabolism,inflammation and vesicular trafficking pathways as risk factors for late onset Alzheimer disease (LOAD). The mechanism by which they cause AD and their relationship to the amyloid cascade affected by genes causing early onset familial AD is unknown. Unproven hypotheses are that these LOAD genes modulate the amyloid cascade itself or downstream targets affected by this cascade.If so, it is likely that these genes and/or other genes in the same pathways may show alterations in their expression as an early consequence of misprocessing of amyloid precursor protein (APP) and accumulation of amyloid -peptides (A). We report that in three independent APP transgenic mouse models of AD, multiple genes in lipid and inflammation pathways show very early changes in mRNA and protein expression. Many of these changes are reversed by treatment with LXR agonists, which regulate transcription of genes in lipid/inflammation pathways, and which we have previously shown can reverse the cognitive deficits and neuropathology in Tg2756 mice. These results suggest that changes in lipid and inflammation pathways are likely to be very early consequences of APP misprocessing and A accumulation in AD. Moreover, genetic variants within these pathways might affect risk for AD by modulating this early response. These pathways are likely to contain biomarkers of early disease and targets for therapies.
No associated publication
Age, Specimen part
View Samples