Understanding the underlying mechanisms of the well-established platelet hyporeactivity in neonates, would be of great relevance for both improving the clinical management of neonates, a population with a higher bleeding risk than adults (especially among sick and preterm infants), and getting new insights onto the regulatory mechanisms of platelet biology. Transcriptome analysis is a useful tool to identify mRNA signature affecting platelet function. However, human fetal/neonatal platelet transcriptome analysis has never been reported. Here, we used, for the first time, mRNA expression array to compare the platelet transcriptome changes during development. Microarray analysis was performed in pure platelet RNA obtained from adult and cord blood, using the same platform in two independent laboratories.
Comprehensive comparison of neonate and adult human platelet transcriptomes.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
DIDO as a Switchboard that Regulates Self-Renewal and Differentiation in Embryonic Stem Cells.
Specimen part
View SamplesTransition from symmetric to asymmetric cell division requires precise coordination of differential gene expression. Embryonic stem cells (ESC) strongly express Dido3, whose C-terminal truncation impedes ESC differentiation while retaining self-renewal. We show that Dido3 binds to its gene locus via H3K4me3 and RNA pol II and, at differentiation onset, induces expression of its splice variant Dido1, which then leads to Dido3 degradation and downregulation of stemness genes. We propose that Dido isoforms act as a switchboard to regulate genetic programs for ESC transition from pluripotency maintenance to promotion of differentiation.
DIDO as a Switchboard that Regulates Self-Renewal and Differentiation in Embryonic Stem Cells.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrative analysis of DNA copy number, DNA methylation and gene expression in multiple myeloma reveals alterations related to relapse.
Sex, Age, Specimen part
View SamplesTo gain further insights into the role of the transcriptome deregulation in the transition from a normal plasma cell (NPC) to a clonal PC and from an indolent clonal PC to a malignant PC, we performed gene expression profiling in 20 patients with MGUS, 33 with high-risk SMM and 41 with MM. The analysis showed that 126 genes were differentially expressed in MGUS, SMM and MM as compared to NPC. Interestingly, 17 and 9 out of the 126 significant differentially expressed genes were small nucleolar RNA molecules (snoRNA) and zinc finger proteins. GADD45A was the most significant up-regulated gene in clonal PC compared to NPC. Several proapoptotic genes (AKT1 and AKT2) were downregulated and antiapoptotic genes (APAF1 and BCL2L1) were upregulated in MM, both symptomatic and asymptomatic, compared to MGUS. Myc mediated apoptosis signaling is one of the top canonical pathways differentiating the asymptomatic and symptomatic myeloma. When we looked for those genes progressively modulated through the evolving stages of monoclonal gammopathies, eight snoRNA showed a progressive increase while APAF1, VCAN and MEGF9 exhibited a progressive downregulation in the transition from MGUS to SMM and to MM. In conclusion, our data show that although MGUS, SMM and MM are not clearly distinguishable groups according to their GEP, several signaling pathways and genes were significant deregulated in the different steps of transformation process.
Transcriptome analysis reveals molecular profiles associated with evolving steps of monoclonal gammopathies.
Specimen part
View SamplesMultiple myeloma (MM) remains incurable despite the introduction of novel agents and a relapsing course is observed in the majority of patients. Although the development of genomic technologies has greatly improved our understanding of MM pathogenesis, the mechanisms underlying relapse have been less investigated. In this study, an integrative analysis of DNA copy number, DNA methylation and gene expression was conducted in matched diagnosis and relapse samples from 17 MM patients. Overall, the acquisition of abnormalities at relapse was much more frequent than the lost of lesions present at diagnosis, and DNA losses were significantly more frequent at relapse than in diagnosis samples. Interestingly, copy number abnormalities involving more than 100 Mb of DNA at relapse significantly impact the gene expression of these samples, provoking a particular deregulation of IL-8 pathway. On the contrary, no relevant modifications of gene expression were observed in those samples with less than 100 Mb affected by chromosomal changes. Although different statistical approaches were used to uncover genes whose abnormal expression at relapse was regulated by DNA methylation, only two genes significantly deregulated in relapse samples (SORL1 and GLT1D1) showed a negative methylation-expression correlation. A deeper analysis demonstrated that DNA methylation was involved in regulation of SORL1 expression in MM. Finally, relevant changes in gene expression observed in relapse samples, such us downregulation of CD27 and P2RY8, were not apparently preceded by alterations in corresponding DNA. Taken together, these results showed that genomic heterogeneity, both at the DNA and RNA level, is a hallmark of MM transition from diagnosis to relapse.
Integrative analysis of DNA copy number, DNA methylation and gene expression in multiple myeloma reveals alterations related to relapse.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
1q gain and CDT2 overexpression underlie an aggressive and highly proliferative form of Ewing sarcoma.
Sex, Age, Specimen part, Disease, Cell line
View SamplesWe have used microarray technology to identify the transcriptional targets of Rho subfamily GTPases. This analysis indicated that murine fibroblasts transformed by these proteins show similar transcriptomal profiles. Functional annotation of the regulated genes indicate that Rho subfamily GTPases target a wide spectrum of biological functions, although loci encoding proteins linked to proliferation and DNA synthesis/transcription are up-regulated preferentially. Rho proteins promote four main networks of interacting proteins nucleated around E2F, c-Jun, c-Myc, and p53. Of those, E2F, c-Jun and c-Myc are essential for the maintenance of cell transformation. Inhibition of Rock, one of the main Rho GTPase targets, leads to small changes in the transcriptome of Rho-transformed cells. Rock inhibition decreases c-myc gene expression without affecting the E2F and c-Jun pathways. Loss-of-function studies demonstrate that c-Myc is important for the blockage of cell-contact inhibition rather than for promoting the proliferation of Rho-transformed cells. However, c-Myc overexpression does not bypass the inhibition of cell transformation induced by Rock blockage, indicating that c-Myc is essential, but not sufficient, for Rock-dependent transformation. These results reveal the complexity of the genetic program orchestrated by the Rho subfamily and pinpoint protein networks that mediate different aspects of the malignant phenotype of Rho-transformed cells
Transcriptomal profiling of the cellular transformation induced by Rho subfamily GTPases.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The kinesin spindle protein inhibitor filanesib enhances the activity of pomalidomide and dexamethasone in multiple myeloma.
Specimen part, Cell line, Treatment
View SamplesEffect of the overexpression of the oncogenic form of the Vav2 protein in the NIH3T3 cell line under serum deprivation conditions. oncovav2-transformed NIH3T3 cells grown in serum-deprived medium (Vav2SD) are compared to the parental NIH3T3 controls under the same growth conditions (ContSD). Vav2SD cells are also compared to the oncovav2-transformed NIH3T3 cells growing exponentially and the NIH3T3 growing exponentially.
Microarray analysis of gene expression with age in individual nematodes.
Cell line
View Samples