Curcumin has been demonstrated to have many neuroprotective properties, including improvement of cognition in humans and neurogenesis in animals, yet the mechanism of such effects remains unclear. Here, we assessed behavioural performance and hippocampal cell proliferation in aged rats after 6- and 12-week curcumin-fortified diets. Curcumin enhanced non-spatial and spatial memory, as well as dentate gyrate cell proliferation as compared to control diet rats. We also investigated underlying mechanistic pathways that might link curcumin treatment to increased cognition and neurogenesis via microarray analysis of cortical and hippocampal mRNA transcription.
No associated publication
Sex, Specimen part, Treatment, Time
View SamplesTo identify the potential mechanisms of enhanced activity of combined inhibition of erlotinib and YF454A, we conducted a microarray analysis on gene expression profiles in PC9 erlotinib cells.
No associated publication
Specimen part, Disease, Treatment
View SamplesFruit dehiscence is an essential developmental process of some economic crops that impacts dramatically on crop yields and involves altered regulation of thousands of genes, ind-6 gene is a transcription factor play important role during fruit dehiscence. Gene expression were examined in wild-type and ind-6 mutants at three development stages of fruit dehiscence to explore the molecular mechanism of ind-6 in fruit dehiscence.
No associated publication
Specimen part
View SamplesThe sequence of gene regulatory events that drive neonatal germ cell development in the mammalian testis is not yet clear. We assessed changes in mRNA utilization in the neonatal testis at 1 and 4 dpp, times when the testis contains quiescent gonocytes (1 dpp) and proliferating spermatogonia (4 dpp). There are not thought to be major changes in the nature or number of somatic cells over that interval.
Translational activation of developmental messenger RNAs during neonatal mouse testis development.
Age, Specimen part
View SamplesEvaluate the change in transcription factors that have a role in human mesenchymal stem cell (hMSC) commitment to a cardiomyocyte lineage when co-cultured for 4 days with rat neonatal cardiomyocytes and before acquiring a recognizable cardiac phenotype.
Calcium dependent CAMTA1 in adult stem cell commitment to a myocardial lineage.
Specimen part, Disease
View SamplesThe recovery of liver mass is mainly mediated by proliferation and enlargement of hepatocytes after partial hepatectomy. Studying the gene expression profiles of hepatocytes after partial hepatectomy will be helpful in exploring the mechanism of liver regeneration.
<i>In silico</i> analysis of expression data during the early priming stage of liver regeneration after partial hepatectomy in rat.
Specimen part, Treatment, Time
View SamplesThe liver has extraordinary powers of regeneration after partial hepatectomy (PH). Changes of gene expression play a key role in cell proliferation and differentiation during liver regeneration (LR). To understand the molecular mechanisms underlying LR, this study was designed to assess the changes of rat hepatic gene expression in a timely manner.
No associated publication
Specimen part, Treatment, Time
View SamplesAllopolyploidy, entailing whole genome duplication (WGD) of merged divergent genomes of different species, often instigates transcriptome shock, whereby both total gene expression level and homeolog expression partitioning can be disrupted and remodeled. Little is known about the extent to which the parental expression-conserved genes will be disrupted/remodeled by allopolyploidization, nor the evolutionary relevancy of shock-induced expression repatterning. Here, by microarray-based gene expression profiling and gene-specific cDNA-pyrosequencing, we assessed transgenerational transcriptome shock in a synthetic allotetraploid wheat (AT2) with karyotype and basic morphology mimicking those of natural tetraploid wheat, Triticum turgidum. We show that the transcriptome shock in AT2 is exceptionally strong that it disrupted intrinsically conserved parental gene expression, and resulted in extensive expression nonadditivity in the newly formed allotetraploid plants. At total expression level, a substantial proportion of shock-induced novel expression, especially over-transgressive expression, was rapidly stabilized already in early generations of AT2. Extensive remodeling of homeolog expression occurred in AT2, including those genes that showed additive total expression, and which generated subgenome expression dominance, a pattern that mirrors T. turgidum. Thus, the shock-induced new patterns of gene expression at both the total expression level and subgenome homeolog partitioning showed evidence of evolutionary persistence. Complex relationships between homeolog expression remodeling and nonadditive total expression were observed in a tissue-specific manner.
No associated publication
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
No associated publication
Sex, Specimen part
View SamplesPeak bone mass (PBM) is an important determinant of osteoporosis. Circulating monocytes may serve as early progenitors of osteoclasts and produce important molecules for bone metabolism. To search for genes functionally important for osteoclastogenesis, we performed a whole genome gene differential expression study of circulating monocytes in human subjects with extremely low vs. high peak bone mass.
No associated publication
No sample metadata fields
View Samples