The mechanisms involved in the pathogenesis of HD that result in late, and fatal, neurodegeneration are still not fully understood. The monogenic nature of HD is in contradiction with the complexity of the cellular alterations found in patients with HD. Huntingtin interacts with a broad range of proteins within the cell, and it is altered by the expanded polyglutamine tract. Transcriptional dysregulation is a common finding in genetic models and in human HD patients, and it is thought to play an important role in the disease. Although the onset of the disease is late in life, growing lines of evidence suggest that mHtt causes alterations in development. In this microarray study, the effects of mHtt on the transcriptome were investigated with a full-length human huntingtin (96 CAG repeats) expressing transgenic rat model of HD at an early stage of development (E14).
No associated publication
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Histone Deacetylases 1 and 2 Regulate Microglia Function during Development, Homeostasis, and Neurodegeneration in a Context-Dependent Manner.
Sex, Age, Specimen part, Treatment
View SamplesRecent studies have shown that tissue macrophages (MF) arise from embryonic progenitors of the yolk sac (YS) and fetal liver and colonize the tissues before birth. Further studies have proposed that developmentally distinct tissue MF can be identified based on the differential expression of F4/80 and CD11b, but whether a characteristic transcriptional profile exists is largely unknown. Here, we established an inducible fate mapping system that facilitated the identification of A2 progenitors of the YS as source of F4/80hi but not CD11bhi MF. Large-scale transcriptional profiling of MF precursors from the YS until adulthood allowed the description of a complex MF pedigree. We further identified a distinct molecular signature of F4/80hi and CD11bhi MF and found that Irf8 was vital for MF maturation and the innate immune response. Our data provide new cellular and molecular insights into the origin and developmental pathways of tissue MF.
Transcriptome-based profiling of yolk sac-derived macrophages reveals a role for Irf8 in macrophage maturation.
Specimen part
View SamplesMicroglia are tissue macrophages of the central nervous system (CNS) that control tissue homeostasis, and as such they are crucially important for organ integrity. Microglia dysregulation is thought to be causal for a group of neuropsychiatric, neurodegenerative and neuroinflammatory diseases, called microgliopathies. However, how the intracellular stimulation machinery in microglia is controlled is poorly understood. By using expression studies, we identified the ubiquitin-specific protease (Usp) 18 in white matter microglia that essentially contributes to microglial quiescence under homeostatic conditions. We further found that microglial Usp18 negatively regulated the activation of STAT1 and concomitant induction of interferon-induced genes thereby disabling the termination of IFN signalling. Unexpectedly, the Usp18-mediated feedback loop was independent from the catalytic domain of the protease but instead required the interacting region of Ifnar2. Additionally, the absence of Ifnar1 completely rescued microglial activation indicating a tonic IFN signal mediated by receptor interactions under non-diseased conditions. Finally, conditional depletion of Usp18 only in myeloid cells significantly enhanced the disease burden in a mouse model of CNS autoimmunity, increased axonal and myelin damage and determined the spatial distributions of CNS lesions that shared the same STAT1 signature as myeloid cells found in active multiple sclerosis (MS) lesions. These results identify Usp18 as novel negative regulator of microglia activation, demonstrate a protective role of the IFNAR pathway for microglia and establish Usp18 as potential therapeutic target for the treatment of MS.
USP18 lack in microglia causes destructive interferonopathy of the mouse brain.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Host microbiota constantly control maturation and function of microglia in the CNS.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Brain Endothelial- and Epithelial-Specific Interferon Receptor Chain 1 Drives Virus-Induced Sickness Behavior and Cognitive Impairment.
Sex, Specimen part, Treatment, Time
View SamplesGenome-wide analysis of GBM-derived brain tumor stem cells-like (BTSCs) collected at the Freiburg Medical Center and UAB (JX6)
NF1 regulates mesenchymal glioblastoma plasticity and aggressiveness through the AP-1 transcription factor FOSL1.
Specimen part, Disease, Disease stage
View SamplesAs tissue macrophages of the central nervous system (CNS), microglia are critically involved in diseases of the CNS. However, it remains unknown what controls their maturation and activation under homeostatic conditions. Here we reveal significant contributions of the host microbiota to microglia homeostasis as germ-free (GF) mice displayed global defects in microglia with altered cell proportions and an immature phenotype leading to impaired innate immune responses. Temporal eradication of host microbiota severely changed microglia properties. Limited microbiota complexity also resulted in defective microglia. In contrast, recolonization with a complex microbiota partially restored microglia features. We determined that short-chain fatty acids (SCFA), microbiota-derived bacterial fermentation products, regulate microglia homeostasis. Accordingly, mice deficient for the SCFA receptor FFAR2 mirrored microglia defects found under GF conditions. These findings reveal that host bacteria vitally regulate microglia maturation and function, whereas microglia impairment can be restored to some extent by complex microbiota.
Host microbiota constantly control maturation and function of microglia in the CNS.
Specimen part, Treatment
View SamplesVSV-M2 is recognized by cytosolic RIG-I. Notably, 5'-triphosphate RNA molecules derived from either viral RNA or from the synthetically produced 3pRNA can also induce RIG-I activation. MDA5 stimulation is achieved using complexed poly(I:C), a synthetic analog of viral dsRNA.
Brain Endothelial- and Epithelial-Specific Interferon Receptor Chain 1 Drives Virus-Induced Sickness Behavior and Cognitive Impairment.
Sex, Specimen part, Treatment, Time
View SamplesStem cells reside in specific niches providing stemness-maintaining environments. Thus, the regulated migration from these niches is associated with differentiation onset. However, mechanisms retaining stem cells in their niche remain poorly understood. Here, we show that the epigenetic regulator lysine-specific demethylase 1 (Lsd1) organises the trophoblast niche of the early mouse embryo by coordinating migration and invasion of trophoblast stem cells (TSCs). Lsd1 deficiency leads to the depletion of the stem cell pool resulting from precocious migration of TSCs.
Lysine-specific demethylase 1 regulates differentiation onset and migration of trophoblast stem cells.
Specimen part, Time
View Samples