This SuperSeries is composed of the SubSeries listed below.
LIN28A is a suppressor of ER-associated translation in embryonic stem cells.
Cell line
View SamplesLIN28A is a highly-conserved RNA-binding protein which is known to be involved in embryonic development, stem cell maintenance and proliferation. LIN28A is expressed in various types of cancer, and they are associated with advanced tumor malignancy. In embryonic stem cell, LIN28A specifically binds to let-7 precursors to suppress biogenesis of the let-7 microRNA family. In addition, LIN28A was reported to bind several mRNAs such as Oct4, cyclin A/B and histone H2A to activate their translation. For comprehensive understanding of the interaction between LIN28A and their target RNAs, we exploited UV-crosslinking and immunoprecipitation (CLIP) to capture their in vivo binding to target RNAs. LIN28A-binding RNAs were identified in a mouse embryonic stem cell line using multiple monoclonal and polyclonal antibodies. The result shows that LIN28 preferentially binds to let-7 precursors through GGAG binding motif, which is consistent with our previous results. We also identified that LIN28A binding is enriched in a certain subset of mRNAs. To understand the function of the novel LIN28A-mRNA binding, we carried out ribosome profiling from LIN28A-depleted mouse embryonic stem cells.
LIN28A is a suppressor of ER-associated translation in embryonic stem cells.
Cell line
View SamplesSeries of samples studying effect of knock out Emx2 in urogenital epithelium of mouse embryos at E10.5.
Abnormal epithelial cell polarity and ectopic epidermal growth factor receptor (EGFR) expression induced in Emx2 KO embryonic gonads.
No sample metadata fields
View SamplesIn sexual reproduction, a proper communication and cooperation between male and female organs and tissue are essential for male and female gametes to unite. In flowering plants, female sporophytic tissues and gametophyte direct a male pollen tube towards an egg apparatus, which consists of an egg cell and two synergid cells. The cell-cell communication between the pollen tube and the egg apparatus, such as the reception of a signal from the egg apparatus at the pollen tube, makes the tip of pollen tube rapture to release the sperm cell. To isolate male factors involved in the interaction between a pollen tube and an egg apparatus, we focused on receptor-like kinases (RLKs), which are extensively diversified in the flowering plant lineage to comprise a large monophyletic gene family. Approximately 620 members were found in the Arabidopsis thaliana genome. Expression patterns of 558 RLKs were analyzed using an Affymetrix ATH1 microarray of A. thaliana. We focused on two RLKs, ANXUR1 (ANX1) and ANXUR2 (ANX2), and characterized their function. Here we report that pollen tubes of anx1/anx2 ruptured before arriving at the egg apparatus, suggesting that ANX1 and ANX2 are male factors controlling pollen tube behavior with directing rupture at proper timing. Furthermore, ANX1 and ANX2 were the most closely related paralogs to a female factor FERONIA/SIRENE controlling pollen tube behavior expressed in synergid cells. Our finding shows that the coordinated behaviors of female and male reproductive apparatuses are regulated by the sister genes, whose duplication might play a role in the evolution of fertilization system in flowering plants.
ANXUR1 and 2, sister genes to FERONIA/SIRENE, are male factors for coordinated fertilization.
No sample metadata fields
View SamplesUnder steady-state conditions, eosinophils are abundantly found in the small intestinal lamina propria, but their physiological function is largely unexplored. We performed a global gene expression analysis to examine which genes are highly expressed by small intestinal eosinophils (CD11b+CD11c(int)MHCII-SiglecF+) compared with dendritic cells (CD11c+MHCII+).
Small intestinal eosinophils regulate Th17 cells by producing IL-1 receptor antagonist.
Age, Specimen part
View SamplesThe colorectal adenoma-carcinoma sequence describes the stepwise progression from normal to dysplastic epithelium and then to carcinoma; only a small proportion of colorectal adenoma (CRA) progresses to colorectal carcinoma (CRC). Presently, endoscopic intervention is used on patients with CRAs of high grade dysplasia, diameters > 1 cm, or villous components > 25% who are at higher risk than other CRA sufferers. During the process, biopsy samples were taken for conventional histological diagnosis, but poor pathomorphological sensitivity and specificity greatly limit the diagnostic accuracy. Unfortunately, there are no reliable molecular criteria available that can predict the potential development of CRA to CRC. In present study, we use microarrays to detail the global programme of gene expression underlying the gradual progress of colorectal adenoma-carcinoma sequence.
Identification of an intermediate signature that marks the initial phases of the colorectal adenoma-carcinoma transition.
Specimen part
View SamplesTo determine what genes are affect to the reduction in mutation frequency by 500Gy gamma irradiation of Drosophila melanogaster.
No associated publication
No sample metadata fields
View SamplesMiR-138 has a variety of biological functions because of its capacity to act on different target genes in various cells and tissues; however, the targets of miR-138 in human non-small cell lung cancer cell line H1299 cannot be determined by bioinformatics alone. Thus, H1299 cells overexpressing miR-138 in H1299 cells were subjected to microarray analysis to analyse the differences of gene expression.
No associated publication
Cell line
View SamplesGenome-wide transcriptional profiling allows characterization of the molecular underpinnings of neocortical organization, including cortical areal specialization, laminar cell type diversity and functional anatomy. Microarray analysis of individual cortical layers across sensorimotor and association cortices in rhesus macaque demonstrated robust and specific laminar and areal molecular signatures driven by differential expression of genes associated with specialized neuronal function. Gene expression corresponding with laminar architecture was generally similar across cortical areas, although genes with robust areal patterning were often highly laminar as well, and these patterns were more highly conserved between macaque and human as compared to mouse. Layer 4 of primate primary visual cortex displayed a distinct molecular signature compared to other cortical regions, a specialization not observed in mouse. Overall, transcriptome-based relationships were strongest between proximal layers in a cortical area, and between neighboring areas along the rostrocaudal axis, reflecting in vivo cortical spatial topography and therefore a developmental imprint.
Transcriptional architecture of the primate neocortex.
Sex, Specimen part, Disease
View SamplesWe sought to find molecular signatures of the SGZ cell types, and to characterize the molecular pathways and transcription factor cascades that define the neurogenic niche. We used laser capture microdissection and DNA microarrays to profile gene expression in the inner (SGZ) and outer portions of the dentate gyrus (DG). Since the vast majority of the cells in the DG are mature granule cells, we compared the expression of the inner and outer portions to reveal molecular markers for the less numerous populations of the SGZ.
Conserved molecular signatures of neurogenesis in the hippocampal subgranular zone of rodents and primates.
Sex, Specimen part
View Samples