Aims: To map histone modifications with unprecedented resolution both globally and locus-specifically, and to link modification patterns to gene expression. Materials & methods: Using correlations between quantitative mass spectrometry and chromatin immunoprecipitation/microarray analyses, we have mapped histone post-translational modifications in fission yeast (Schizosaccharomyces pombe). Results: Acetylations at lysine 9, 18 and 27 of histone H3 give the best positive correlations with gene expression in this organism. Using clustering analysis and gene ontology search tools, we identified promoter histone modification patterns that characterize several classes of gene function. For example, gene promoters of genes involved in cytokinesis have high H3K36me2 and low H3K4me2, whereas the converse pattern is found ar promoters of gene involved in positive regulation of the cell cycle. We detected acetylation of H4 preferentially at lysine 16 followed by lysine 12, 8 and 5. Our analysis shows that this H4 acetylation bias in the coding regions is dependent upon gene length and linked to gene expression. Our analysis also reveals a role for H3K36 methylation at gene promoters where it functions in a crosstalk between the histone methyltransferase Set2KMT3 and the histone deacetylase Clr6, which removes H3K27ac leading to repression of transcription. Conclusion: Histone modification patterns could be linked to gene expression in fission yeast.
Genome-wide mapping of histone modifications and mass spectrometry reveal H4 acetylation bias and H3K36 methylation at gene promoters in fission yeast.
No sample metadata fields
View SamplesFor each strain two time courses for mRNA abundance: Oxidative and MMS and two time courses for decay: reference decay and following oxidative stress
Transcriptome kinetics is governed by a genome-wide coupling of mRNA production and degradation: a role for RNA Pol II.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
No associated publication
No sample metadata fields
View SamplesWe subjected yeast to two stresses, oxidative stress, which under current settings induces a fast and transient response in mRNA abundance, and DNA damage, which triggers a slow enduring response. Using microarrays, we performed a transcriptional arrest experiment to measure genome-wide mRNA decay profiles under each condition. Genome-wide decay kinetics in each condition were compared to decay experiments that were performed in a reference condition (only transcription inhibition without an additional stress) to quantify changes in mRNA stability in each condition. We found condition-specific changes in mRNA decay rates and coordination between mRNA production and degradation. In the transient response, most induced genes were surprisingly destabilized, while repressed genes were somewhat stabilized, exhibiting counteraction between production and degradation. This strategy can reconcile high steady-state level with short response time among induced genes. In contrast, the stress that induces the slow response displays the more expected behavior, whereby most induced genes are stabilized, and repressed genes destabilized. Our results show genome-wide interplay between mRNA production and degradation, and that alternative modes of such interplay determine the kinetics of the transcriptome in response to stress.
Transient transcriptional responses to stress are generated by opposing effects of mRNA production and degradation.
No sample metadata fields
View SamplesS. cerevisae cells were exposed to different series of mild stresses. Stress type include heat shock, oxidative and osmotic stresses.
No associated publication
Time
View SamplesWe subjected yeast to two stresses, oxidative stress, which under current settings induces a fast and transient response in mRNA abundance, and DNA damage, which triggers a slow enduring response. Using microarrays we performed a conventional quantification of change in mRNA abundance.
No associated publication
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Adipose tissue microRNAs as regulators of CCL2 production in human obesity.
Sex, Age, Specimen part, Subject
View SamplesIn a randomized controlled dietary intervention study we compared an isocaloric Healthy Nordic diet with the average Nordic diet for influence on abdominal subcutaneous adipose tisse gene expression. We studied obese adults with features of the metabolic syndrom, n=56. There was no significant difference in age, BMI, or gene expression between the groups before the intervention. The intervention lasted for 18-24 weeks.
Healthy Nordic diet downregulates the expression of genes involved in inflammation in subcutaneous adipose tissue in individuals with features of the metabolic syndrome.
Age, Specimen part
View SamplesThe aim of this study was to identify novel long noncoding RNAs (lncRNAs) that are differentially expressed in the subcutaneous region either in obesity or insulin resistance.
Long Non-Coding RNAs Associated with Metabolic Traits in Human White Adipose Tissue.
Sex, Age, Specimen part
View SamplesIn a randomized controlled dietary intervention study, we compared a diet enriched in polyunsaturated fatty acids (PUFA) with a diet enriched in saturated fatty acids (SFA) for influence on abdominal subcutaneous adipose tissue gene expression. We studied young lean adults; 11 women and 25 men. There was no significant difference in age, BMI, or gene expression between the PUFA and SFA groups before the intervention. The intervention lasted for seven weeks.
Overfeeding polyunsaturated and saturated fat causes distinct effects on liver and visceral fat accumulation in humans.
Sex, Age, Specimen part, Treatment, Subject, Time
View Samples