Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) is a distinct subtype of B-ALL with a poor prognosis. Rearrangement of LYN is a recurrent genetic abnormality in Ph-like ALL, but functional analysis of LYN-related fusion genes identified in ALL has not been reported. In this study, we performed functional analysis of the NCOR1-LYN fusion gene identified in a pediatric Ph-like ALL patient to establish its potential for molecular targeted therapy. Retroviral transduction of interleukin (IL)-3-dependent Ba/F3 cells with NCOR1-LYN enabled IL-3-independent proliferation, with constitutive phosphorylation of the tyrosine residues of the LYN kinase domain in the fusion protein. Replacing tyrosine residues with phenylalanine in the LYN kinase domain abolished IL-3 independence. Tyrosine kinase inhibitor dasatinib killed Ba/F3 cells expressing NCOR1-LYN in vitro accompanied by dephosphorylation of the tyrosine residues of the LYN kinase domain in the fusion protein.
Leukemic cells expressing NCOR1-LYN are sensitive to dasatinib in vivo in a patient-derived xenograft mouse model.
Cell line
View SamplesWe used microarrays to select the genes associated glioma patients survival.
Gene expression signature-based prognostic risk score in patients with glioblastoma.
Sex, Age, Disease, Disease stage
View SamplesThis study aimed to define the genes associated with PCNSL patient survival. Expression profiling was performed on 34 PCNSLs. A gene classifier was developed.
Gene expression signature-based prognostic risk score in patients with primary central nervous system lymphoma.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Reprogrammed Functional Brown Adipocytes Ameliorate Insulin Resistance and Dyslipidemia in Diet-Induced Obesity and Type 2 Diabetes.
Specimen part
View SamplesRecently, acute kidney injury (AKI) is thought to develop a predisposition toward chronic kidney disease. But the detailed mechanism of the disease progression after AKI is unknown. We made two ischemia-reperfusion injury (IRI) mice models, repaired kidney model and atrophic kidney model, and studied the mechanism that kidney after IRI became atrophy. We found that the atrophy kidney model had two peaks of apoptosis 3 and 14 days after IRI, whereas the repaired kidney model had only one apoptosis peak 3 days after IRI. We showed that the second apoptosis is responsible for the kidney atrophy. Moreover, apoptotic ligands, TNF and FasL were upregulated at the same time of two apoptosis peaks on the atrophic kidney, and blockade of them before IRI prevented kidney from falling into atrophy. Surprisingly, inhibition of the second apoptosis by anti-TNF antibody protected from renal atrophy. We propose that apoptosis might play a major role in AKI progression and blockade of TNF after IRI will be a new therapeutic approach for AKI.
No associated publication
Sex
View SamplesComparasion of each cell mRNA expression pattern
Reprogrammed Functional Brown Adipocytes Ameliorate Insulin Resistance and Dyslipidemia in Diet-Induced Obesity and Type 2 Diabetes.
Specimen part
View SamplesComparison of each cell mRNA expression pattern.
Direct conversion of human fibroblasts into functional osteoblasts by defined factors.
Specimen part
View SamplesComparason of each cell mRNA expression pattern
Direct phenotypic conversion of human fibroblasts into functional osteoblasts triggered by a blockade of the transforming growth factor-β signal.
Specimen part
View SamplesRSK2 is a serine/threonine kinase downstream signaling mediator in the RAS/ERK signaling pathway and may be a therapeutic target in mantle cell lymphoma (MCL). RSK2-Ser227 in the N-terminal kinase domain (NTKD) of RSK2 was found to be ubiquitously active in five MCL-derived cell lines and in tumor tissues derived from five MCL patients. BI-D1870, an inhibitor specific to RSK2-NTKD, caused RSK2-Ser227 dephosphorylation, and thereby, induced dose-dependent growth inhibition via G2/M cell cycle blockade and apoptosis. Comparative gene expression profiling of the MCL-derived cell lines showed that inhibition of RSK2-Ser227 by BI-D1870 caused downregulation of oncogenes, such c-MYC and MYB; anti-apoptosis genes, such as BCL2 and BCL2L1; genes for B cell development, including IKZF1, IKZF3 and PAX5; and genes constituting the B cell receptor signaling pathway, such as CD19, CD79B and BLNK. These findings show that targeting of RSK2-Ser227 enables concomitant blockade of pathways that are critically important in B cell tumorigenesis.
No associated publication
Cell line, Treatment
View SamplesComparasion of each cell mRNA expression pattern
Reprogrammed Functional Brown Adipocytes Ameliorate Insulin Resistance and Dyslipidemia in Diet-Induced Obesity and Type 2 Diabetes.
Specimen part
View Samples