Flowering time is a complex trait regulated by many genes that are integrated in different genetic pathways. Different genetic screenings carried out during the past decades have revealed an intrincated genetic regulatory network governing this trait. Efforts aimed at improving our understanding of how such genetic pathways respond to genetic and enviromental cues are needed.
The arabidopsis DNA polymerase δ has a role in the deposition of transcriptionally active epigenetic marks, development and flowering.
Age, Specimen part
View SamplesPlants regulate their time to flowering by gathering information from the environment. Photoperiod and temperature are among the most important environmental variables. Suboptimal, but not near-freezing, temperatures regulate flowering through the thermosensory pathway, which overlaps with the autonomous pathway. Here we show that ambient temperature regulates flowering by two genetically distinguishable pathways, one that requires TFL1 and another that requires ELF3. The delay in flowering time observed at lower temperatures was partially suppressed in single elf3 and tfl1 mutants, whereas double elf3 tfl1 mutants were insensitive to temperature. tfl1 mutations abolished the temperature response in cryptochrome mutants that are deficient in photoperiod perception, but not in phyB mutants that have a constitutive photoperiodic response. Contrary to tfl1, elf3 mutations were able to suppress the temperature response in phyB mutants, but not in cryptochrome mutants. The gene expression profile revealed that the tfl1 and elf3 effects are due to the activation of different sets of genes and identified CCA1 and SOC1/AGL20 as being important cross talk points. Finally, genome-wide gene expression analysis strongly suggests a general and complementary role for ELF3 and TFL1 in temperature signalling.
A complementary role for ELF3 and TFL1 in the regulation of flowering time by ambient temperature.
No sample metadata fields
View SamplesTwo aspects of light are very important for plant development: the length of the light phase or photoperiod and the quality of incoming light. Photoperiod detection allows plants to anticipate the arrival of the next season, whereas light quality, mainly the red to far-red ratio (R:FR), is an early signal of competition by neighbouring plants. phyB represses flowering by antagonising CO at the transcriptional and post-translational levels. A low R:FR decreases active phyB and consequently increases active CO, which in turn activates the expression of FT, the plant florigen. Other phytochromes like phyD and phyE seem to have redundant roles with phyB. PFT1, the MED25 subunit of the plant Mediator complex, has been proposed to act in the light-quality pathway that regulates flowering time downstream of phyB. However, whether PFT1 signals through CO and its specific mechanism are unclear. Here we show that CO-dependent and -independent mechanisms operate downstream of phyB, phyD and phyE to promote flowering, and that PFT1 is equally able to promote flowering by modulating both CO-dependent and -independent pathways. Our data are consistent with the role of PFT1 as an activator of CO transcription, and also of FT transcription, in a CO-independent manner. Our transcriptome analysis is also consistent with CO and FT genes being the most important flowering targets of PFT1. Furthermore, comparison of the pft1 transcriptome with transcriptomes after fungal and herbivore attack strongly suggests that PFT1 acts as a hub, integrating a variety of interdependent environmental stimuli, including light quality and jasmonic acid-dependent defences.
PFT1, the MED25 subunit of the plant Mediator complex, promotes flowering through CONSTANS dependent and independent mechanisms in Arabidopsis.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
LNK genes integrate light and clock signaling networks at the core of the Arabidopsis oscillator.
Specimen part, Treatment, Time
View SamplesLight pulses at the end of the day or night be able to control the phase of the circadian clock. Pulses in the middle of the night has not effect on the circadian oscilations.
LNK genes integrate light and clock signaling networks at the core of the Arabidopsis oscillator.
Specimen part, Treatment, Time
View SamplesSTAT3 is an immidiate regulator of Th17 differentiation. STAT3 difieciency downmodulate Th17 specific genes and Th17 responses. Therefore, we intend to identify genome wide targets of STAT3.
Genome-wide Analysis of STAT3-Mediated Transcription during Early Human Th17 Cell Differentiation.
Specimen part, Treatment, Time
View SamplesExtracellular superoxide dismutase (SOD3), which dismutases hydrogen peroxide to superoxide anion at cell membranes, mimics RAS oncogene action inducing primary cell immortalization at sustained low-level expression while high expression activates cancer barrier signaling through p53-p21 growth arrest pathway. We have previously demonstrated that the growth regulation of SOD3 occurs at the level of RAS and is mediated through non-transcriptional and transcriptional routes. Therefore, in the current work we assayed the growth suppressive mechanisms of SOD3 by characterizing the main signal transduction routes from the cell membrane into the nucleus. Based on our data robust over-expression of SOD3 in anaplastic thyroid cancer 8505c cells increased EGFR, RYK, ALK, FLT3, and EPHA10 tyrosine kinase receptor phosphorylation with consequent downstream SRC, FYN, YES, HCK, and LYN kinase activation. However, RAS pull-down experiment suggested lack of mitogen pathway stimulation that was confirmed by MEK1/2 and ERK1/2 Western blot. Interestingly, mRNA expression analysis indicated that SOD3 regulated in a dose dependent manner the expression of selected guanine nucleotide exchange factors (Rho GEF16, Ral GEF RGL1), GTPase activating proteins (ArfGAP ADAP2, Ras GAP RASAL1, RGS4), and Rho guanine nucleotide disassociation inhibitors (Rho GDI 2) therefore controlling the signal transduction through RAS GTPases to downstream signal transduction pathways. Our current data suggests a SOD3-induced activation of growth signal transduction is controlled in a dose dependent manner through GEF, GAP, and GDI.
No associated publication
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Brain transcriptional and epigenetic associations with autism.
Age, Specimen part, Disease, Disease stage, Subject
View SamplesTranscriptome analysis was used to identify gene expression changes during development of sunitinib resistance in a renal cell carcinoma patient-derived xenograft (PDX) model. During the response phase, tumors exhibited a 91% reduction in volume, characterized by induction of TNFRSF1A, TNFAIP3, NFKB2, CCL2, CCL20, BIRC3, and MOAP1. Ingenuity Pathway Analysis indicated decreased expression of cell survival genes during tumor response to sunitinib. In this model, after 4 weeks of treatment, tumors developed resistance despite continued administration of the tyrosine kinase inhibitor (TKI) sunitinib (40 mg/kg/d p.o.). Resistance was associated with increased expression of VEGFA, EPO, IL-8, ANGPT2, TNFRSF12, MAPK3/7, MAPKBP1, and increased cell survival genes, suggesting activation of angiogenesis and MAPK/ERK pathways. Tumor lysate mRNA evaluated for murine gene expression to examine the contribution of host effects, indicated that tumor response was associated with downregulation of immune cell trafficking, cellular movement, and inflammatory response genes. During tumor escape, genes associated with cellular movement, inflammatory response, and immune cell trafficking were strongly induced, along with intratumoral accumulation of myeloid derived suppressor cells (MDSC), indicating a role for host factors during emergence of sunitinib resistance. The same PDX model was used to assess anti-tumor efficacy of sunitinib combined with MEK inhibitor (MEKi) PD-0325901 (4 mg/kg/d p.o.) using different schedules. The most effective treatment regimen was either continuous treatment with both drugs or switching from sunitinib to PD-0325901 monotherapy at d30, which reduced tumor volume by 78.6% (p=0.0241) and 88.5% (p=0.0068), respectively. The combination of MEKi with TKI (sunitinib, axitinib, or pazopanib) suppressed levels of phospho-MEK1/2 and phospho-ERK1/2, and decreased intratumoral MDSC. Thus, continuous treatment with sunitinib alone did not maintain tumor response, and addition of a MEKi abrogated resistance leading to prolonged survival.
No associated publication
Specimen part
View SamplesAutism is a common neurodevelopmental syndrome. Numerous rare genetic etiologies are reported; most cases are idiopathic. To uncover important gene dysregulation in autism we analyzed carefully selected idiopathic autistic and control cerebellar and BA19 (occipital) brain tissues using high resolution whole genome gene expression and DNA methylation microarrays. No changes in DNA methylation were identified in autistic brain but gene expression abnormalities in two areas of metabolism were apparent: down-regulation of genes of mitochondrial oxidative phosphorylation and of protein translation. We also found associations between specific behavioral domains of autism and specific brain gene expression modules related to myelin/myelination, inflammation/immune response and purinergic signaling. This work highlights two largely unrecognized molecular pathophysiological themes in autism and suggests differing molecular bases for autism behavioral endophenotypes.
Brain transcriptional and epigenetic associations with autism.
Age
View Samples