Preclinical cancer drug discovery efforts have employed two-dimensional (2D)-cell-based assay models, which fail to forecast in vivo efficacy and contribute to a lower success rates of clinical approval. Three-dimensional (3D) cell culture models are recently expected to bridge the gap between 2D and in vivo models. We have developed a novel 3D culture method that is suitable for imaging analysis and improves the growth of spheroid-forming cancer cells under anchorage-independent condition by leveraging a feature of LA717, a seaweed-derived polysaccharide.
No associated publication
Specimen part
View SamplesPreclinical cancer drug discovery efforts have employed two-dimensional (2D)-cell-based assay models, which fail to forecast in vivo efficacy and contribute to a lower success rates of clinical approval. Three-dimensional (3D) cell culture models are recently expected to bridge the gap between 2D and in vivo models. We have developed a novel 3D culture method that is suitable for imaging analysis and improves the growth of spheroid-forming cancer cells under anchorage-independent condition by leveraging a feature of LA717, a seaweed-derived polysaccharide.
No associated publication
Cell line
View SamplesWe used microarrays to observe the global gene expression in hematopoietic stem and projenitor cells during ex vivo culture with DMSO (Blank) or with Garcinol (GAR) and identified distinct classes of up or down-regulated genes.
Ex vivo expansion of human hematopoietic stem cells by garcinol, a potent inhibitor of histone acetyltransferase.
Specimen part, Treatment
View SamplesPreclinical cancer drug discovery efforts have employed two-dimensional (2D)-cell-based assay models, which fail to forecast in vivo efficacy and contribute to a lower success rates of clinical approval. Three-dimensional (3D) cell culture models are recently expected to bridge the gap between 2D and in vivo models. We have developed novel 3D culture method that improves the growth of spheroid-forming cancer cells under anchorage-independent condition by leveraging a feature of FP001.
No associated publication
Cell line
View SamplesPreclinical cancer drug discovery efforts have employed two-dimensional (2D)-cell-based assay models, which fail to forecast in vivo efficacy and contribute to a lower success rates of clinical approval. Three-dimensional (3D) cell culture models are recently expected to bridge the gap between 2D and in vivo models. We have developed a novel 3D culture method that improves the growth of spheroid-forming cancer cells under anchorage-independent condition by leveraging a feature of FP001, a bacteria-derived polysaccharide.
No associated publication
Cell line, Treatment
View SamplesPreclinical cancer drug discovery efforts have employed two-dimensional (2D)-cell-based assay models, which fail to forecast in vivo efficacy and contribute to a lower success rates of clinical approval. Three-dimensional (3D) cell culture models are recently expected to bridge the gap between 2D and in vivo models. We have developed novel 3D culture method that improves the growth of spheroid-forming cancer cells under anchorage-independent condition by leveraging a feature of FP001.
No associated publication
Cell line
View SamplesPreclinical cancer drug discovery efforts have employed two-dimensional (2D)-cell-based assay models, which fail to forecast in vivo efficacy and contribute to a lower success rates of clinical approval. Three-dimensional (3D) cell culture models are recently expected to bridge the gap between 2D and in vivo models. We compared between A549 cells cultured in ordinal 2D condition and xenografted tumor tissue.
No associated publication
Specimen part
View SamplesFemale Crlj:CD1(ICR) mice were fed diets containing 0 (control), 5000 and 10000 ppm permethrin and 2500 ppm isoniazid (positive control for tumor induction) for periods of 7 and 14 days.
No associated publication
Sex, Specimen part
View SamplesWe used microarrays to identify genes in the migrated bone marrow-derived cells by G-CSF
No associated publication
Specimen part
View SamplesWe used microarrays to identify genes in regenerating mouse liver after OGFRL1-expressing cell administration
No associated publication
Specimen part
View Samples