Global transcriptomic alterations of both coding and non-coding RNA species are a ubiquitous feature associated with human cancers including hepatocellular carcinoma (HCC). Dysregulation of RNA-binding proteins (RBPs), the key regulators of RNA processing, is one mechanism in which cancer cells select to promote tumorigenesis. We analyzed genomic alterations amongst a family of more than 800 mRNA RBPs (mRBPs) in 1,225 clinical specimens from HCC patients and found that RBPs are significantly activated through gene amplification in a subset of tumors with poor prognosis, suggesting their potential oncogenic roles in HCC progression. Amongst the top candidates, RD binding protein (RDBP) was further characterized for its oncogenic role and effects on the HCC transcriptome. While the activation of RDBP induced an oncogenic phenotype, the abrogation of RDBP in HCC cells significantly decreased cancer associated phenotypes such as cell proliferation, migration/invasion and tumorigenicity in vivo. Further microarray analyses revealed that RDBP-dependent genes were tumor-related with a significant enrichment for c-Myc targets, suggesting interplay between RDBP and c-Myc signaling. Similar data were also found in HCC clinical specimens where c-Myc amplification was uncommon. Consistently, the RDBP-dependent c-Myc target gene signature was able to predict HCC patient survival in two independent cohorts of more than 400 patients. Taken together, our results suggest that oncogenic activation of RDBP is a novel mechanism that contributes to global transcriptome imbalance that is selective for the activation of c-Myc oncogenic signaling in HCC.
Oncogenic Activation of the RNA Binding Protein NELFE and MYC Signaling in Hepatocellular Carcinoma.
Specimen part
View SamplesLong-lived, self-renewing, multipotent T memory stem cells (TSCM) can trigger profound and sustained tumor regression but their rareness poses a major hurdle to their clinical application. Presently, clinically compliant procedures to generate relevant numbers of this T cell population are undefined. Here, we provide a strategy for deriving large numbers of clinical grade tumor-redirected TSCM cells starting from nave precursors. CD8+CD62L+CD45RA+ nave T cells enriched by streptamer-based serial positive selection were activated by CD3/CD28 engagement in the presence of IL-7, IL-21 and the glycogen synthase-3 inhibitor TWS119, and genetically engineered to express a CD19-specific chimeric antigen receptor (CD19-CAR). These conditions allowed for the generation of CD19-CAR modified TSCM cells that were phenotypically, functionally and transcriptomically equivalent to their naturally occurring counterpart. Compared with T cell products currently under clinical investigation, CD19-CAR modified TSCM cells exhibit enhanced metabolic fitness, persistence and anti-tumor activity against systemic acute lymphoblastic leukemia xenografts. Based on these findings, we have initiated a phase 1 clinical study to evaluate the activity of CD19-CAR modified TSCM in patients with B-cell malignancies refractory to prior allogeneic hematopoietic stem cell transplantation.
Generation of clinical-grade CD19-specific CAR-modified CD8+ memory stem cells for the treatment of human B-cell malignancies.
Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrative genomic analysis of the human immune response to influenza vaccination.
Sex, Specimen part, Treatment, Subject, Time
View SamplesThe purpose of the study was to assess the patterns of global gene expression in peripheral blood cells before and at three time points after the administration of a trivalent influenza vaccine in human male subjects, and to relate these to the antibody response to the vaccine. The antibody titer data for these subjects is provided as a supplemental file.
Integrative genomic analysis of the human immune response to influenza vaccination.
Sex, Specimen part, Treatment, Subject, Time
View SamplesThe purpose of the study was to assess the patterns of global gene expression in peripheral blood cells before and at three time points after the administration of a trivalent influenza vaccine in human female subjects, and to relate these to the antibody response to the vaccine
Integrative genomic analysis of the human immune response to influenza vaccination.
Sex, Specimen part, Treatment, Subject, Time
View SamplesThe molecular mechanisms whereby hepatitis B virus (HBV) induces hepatocellular carcinoma (HCC) remain elusive. We used genomic and molecular techniques to investigate host-virus interactions by mapping the entire liver of patients with HCC. We compared the gene signature of whole liver tissue (WLT) versus laser capture-microdissected (LCM) hepatocytes with intrahepatic expression of HBV. Gene expression profiling was performed on up to 17 WLT specimens obtained at various distances from the tumor center in individual livers of 11 patients with HCC and on selected LCM samples. HBV biomarkers were determined by real-time PCR and confocal immunofluorescence. Analysis of 5 areas of the liver showed a sharp change in gene expression between the immediate perilesional area and tumor periphery that correlated with a significant decrease in the intrahepatic expression of HBsAg. The tumor was characterized by a large preponderance of down-regulated genes, mostly involved in the metabolism of lipid and fatty acid, glucose, amino acids and drugs, with down-regulation of pathways involved in the activation of PXR/RXR and PPARa/RXRa nuclear receptors, comprising PGC1 and FOXO1, two key regulators of the hepatic metabolic functions and HBV transcription. These findings were confirmed by gene expression of microdissected hepatocytes. However, LCM of malignant hepatocytes also revealed up-regulation of unique genes associated with cancer and signaling pathways, including two novel HCC-associated cancer testis antigen (CTA) genes, NUF2 and TTK. HCC-associated with HBV is characterized by a metabolism switch-off and by a significant reduction in HBsAg. LCM proved to be a critical tool to validate gene signatures associated with HCC and to identify genes that may play a role in hepatocarcinogenesis opening new perspectives for the discovery of novel diagnostic markers and therapeutic targets.
Viral expression and molecular profiling in liver tissue versus microdissected hepatocytes in hepatitis B virus-associated hepatocellular carcinoma.
Specimen part, Disease, Subject
View SamplesDown syndrome (DS), a genetic condition leading to intellectual disability, is characterized by triplication of human chromosome 21. Neuropathological hallmarks of DS include abnormal central nervous system development that manifests during gestation and extends throughout life. As a result, newborns and adults with DS exhibit cognitive and motor deficits and fail to meet typical developmental and lack independent life skills. A critical outstanding question is how DS-specific prenatal and postnatal phenotypes are recapitulated in different mouse models. To begin answering this question, we developed a life span approach to directly compare differences in embryonic brain development, cellularity, gene expression, neonatal and adult behavior behavior in three cytogenetically distinct mouse models of DSTs1Cje, Ts65Dn and Dp16/1Yey (Dp16).
No associated publication
Sex, Specimen part
View SamplesMetastasis suppressor genes (MSGs) have contributed to an understanding of regulatory pathways unique to the lethal metastatic process. When re-expressed in experimental models, MSGs block cancer spread to, and colonization of distant sites without affecting primary tumor formation. On a single MSG basis, genes have been identified with expression patterns inverse to a MSG, and found to encode functional, druggable signaling pathways. We now hypothesize that common signaling pathways mediate the effects of many MSGs. By gene expression profiling of human MCF7 breast carcinoma cells expressing a scrambled siRNA or siRNAs to each of 19 validated MSGs (NME1, BRMS1, CD82, CDH1, CDH2, CDH11, CASP8, MAP2K4, MAP2K6, MAP2K7, MAPK14, GSN, ARHGDIB, AKAP12, DRG1, CD44, PEBP1, RRM1, KISS1), we identified genes whose expression was significantly opposite to at least five MSGs.
No associated publication
Specimen part, Cell line, Treatment, Time
View SamplesMicroarray gene expression of peripheral blood of the prostate cancer patients receiving localized external beam radiation therapy (EBRT)
No associated publication
Disease, Disease stage, Treatment, Subject, Time
View SamplesAutism spectrum disorder (ASD) is an early onset neurodevelopmental disorder, which is characterized by disturbances of brain function and behavioral deficits in core areas of impaired reciprocal socialization, impairment in communication skills, and repetitive or restrictive interests and behaviors. ASD is known to have a significant genetic risk, but the underlying genetic variation can be attributed to hundreds of genes. The molecular and pathophysiologic basis of ASD remains elusive because of its genetic heterogeneity and complexity, its high comorbidity with other diseases, and the paucity of brain tissue for study. The invasive nature of collecting primary neuronal tissue from patients might be circumvented through reprogramming peripheral cells to induced pluripotent stem cells (iPSCs), which are able to generate live neurons carrying the genetic variants of disease. This breakthrough allows us to access the cellular and molecular phenotypes of patients with intrinsic autism, that is patients without known genetic disorders or identifiable syndromes or malformations. To do this, we studied a relatively homogeneous patient population of boys with intrinsic autism by excluding patients with known genetic disease or recognizable phenotypes or syndromes, as well as those with profound mental retardation or primary seizure disorders. We generated iPSCs from patients with intrinsic autism, their unaffected male siblings and age-, and sex-matched unaffected controls. And these stem cells were subsequently differentiated into electrophysiologically active neurons. The expression profile for autistic and their unaffected siblings' iPSC-derived neurons were compared. A distinct expression profile was found between autism and sib control. The significantly differentially expressed genes (> 2-fold, FDR < 0.05) in autistic iPSC-derived neurons were significantly enriched for processes related to synaptic transmission, such as neuroactive ligand-receptor signaling and extracellular matrix interactions (FDR < 0.05), and were significantly enriched for genes previously associated with ASD (p < 0.05). Our findings suggest approaches such as iPSC-derived neurons will be an important method to obtain tissue for study that appropriately recapitulates the complex dynamics of an autistic neural cell.
Idiopathic Autism: Cellular and Molecular Phenotypes in Pluripotent Stem Cell-Derived Neurons.
Specimen part, Cell line, Subject
View Samples