This SuperSeries is composed of the SubSeries listed below.
No associated publication
Specimen part, Cell line
View SamplesThe GeneChip Porcine Genome Array was used to identify the transcriptional response upon either Salmonella typhimurium (ST) or Salmonella choleraesuis (SC) infection in two porcine epithelial cell lines (IPEC-J2, from jejunum and IPI-2I, from ileum) during 2 and 4 hours post infection.
No associated publication
Specimen part, Cell line
View SamplesThe GeneChip Porcine Genome Array was used to identify the transcriptional response upon either Salmonella typhimurium (ST) or Salmonella choleraesuis (SC) infection in two porcine epithelial cell lines (IPEC-J2, from jejunum and IPI-2I, from ileum) during 2 and 4 hours post infection.
No associated publication
Specimen part, Cell line
View SamplesThe GeneChip Porcine Genome Array was used to identify the transcriptional response upon either Salmonella typhimurium (ST) or Salmonella choleraesuis (SC) infection in two porcine epithelial cell lines (IPEC-J2, from jejunum and IPI-2I, from ileum) during 2 and 4 hours post infection.
No associated publication
Specimen part, Cell line
View SamplesThe GeneChip Porcine Genome Array was used to identify the transcriptional response upon either Salmonella typhimurium (ST) or Salmonella choleraesuis (SC) infection in two porcine epithelial cell lines (IPEC-J2, from jejunum and IPI-2I, from ileum) during 2 and 4 hours post infection.
No associated publication
Specimen part, Cell line
View SamplesThe GeneChip Porcine Genome Array was used to identify the transcriptional response upon Salmonella typhimurium infection in three porcine intestinal sections (jejumun, ileum and colon) along a time course of 1,2 and 6 days post infection.
No associated publication
Specimen part, Treatment
View SamplesPrimary cells deficient for PDCD10/CCM3 do not enter senescence as control cells. Microarray analysis was performed in cells transduced with non-targeting shRNA and CCM3 shRNA at passage 7 (early passage) and passage 11 (late passage), when control cells are already senescent.
No associated publication
Specimen part
View SamplescAMP receptor protein (CRP, also known as the catabolite activator protein [CAP]) is arguably the best-studied of the global transcription factors of E coli. CRP alone is responsible for regulating at least 283 operons. Upon binding cAMP, the CRP dimer binds DNA and directly interacts with RNA polymerase (RNAP). At Class II promoters, CRP binds near position -41,5 relative to the transcription start site and contacts the amino-terminal domain of the RNAP subunit (RNAP-NTD). This interaction requires AR2, a patch of primarily positively charged residues (H19, H21, E96, and K101) that interact with negatively charged residues on RNAP-NTD. Acetylome analyses consistently detect lysine 100 (K100) of CRP as acetylated. Since K100 is adjacent to the positively charged AR2, we hypothesized that the K100 positive charge may also play a role in CRP function. We further hypothesized that acetylation of K100 would neutralize this positive charge, leading to a potential regulatory mechanism
Influence of Glucose Availability and CRP Acetylation on the Genome-Wide Transcriptional Response of <i>Escherichia coli</i>: Assessment by an Optimized Factorial Microarray Analysis.
No sample metadata fields
View SamplesThe genomic causes of inbreeding depression are poorly known. Several studies have found widespread transcriptomic alterations in inbred organisms, but it remains unclear which of these alterations are causes of the depression and which are mere responses to the ensuing physiological stress.
No associated publication
Specimen part
View SamplesA detailed knowledge of the mechanisms underlying brain aging is fundamental to understand its functional decline and the baseline upon which brain pathologies superimpose. Endogenous protective mechanisms must contribute to the adaptability and plasticity still present in the healthy aged brain. Apolipoprotein D (ApoD) is one of the few genes with a consistent and evolutionarily conserved up-regulation in the aged brain. ApoD protecting roles upon stress or injury are well known, but a study of the effects of ApoD expression in the normal aging process is still missing. Using an ApoD-knockout mouse we analyze the effects of ApoD on factors contributing to the functional maintenance of the aged brain. We focused our cellular and molecular analyses in cortex and hippocampus at an age representing the onset of senescence where mortality risks are below 25%, avoiding bias towards long-lived animals. Lack of ApoD causes a prematurely aged brain without altering lifespan. Age-dependent hyperkinesia and memory deficits are accompanied by differential molecular effects in cortex and hippocampus. Transcriptome analyses reveal distinct effects of ApoD loss on the molecular age-dependent patterns of cortex and hippocampus, with different cell-type contributions to age-regulated gene expression. Markers of glial reactivity, proteostasis, and oxidative and inflammatory damage reveal early signs of aging and enhanced brain deterioration in the ApoD-knockout brain. The lack of ApoD results in an age-enhanced significant reduction in neuronal calcium-dependent functionality markers and signs of early reduction of neuronal numbers in the cortex, thus impinging upon parameters clearly differentiating neurodegenerative conditions from healthy brain aging. Our data support the hypothesis that the physiological increased brain expression of ApoD represents a homeostatic anti-aging mechanism.
Aging without Apolipoprotein D: Molecular and cellular modifications in the hippocampus and cortex.
Sex, Age, Specimen part
View Samples