This SuperSeries is composed of the SubSeries listed below.
No associated publication
Specimen part
View SamplesGenome wide expression profiling of placenta and cord blood samples from 48 newborns.
No associated publication
Specimen part
View SamplesCloned embryos produced by somatic cell nuclear transfer (SCNT) display a plethora of phenotypic characteristics that make them different from fertilized embryos, indicating defects in the process of nuclear reprogramming by the recipient ooplasm. To elucidate the extent and timing of nuclear reprogramming, we used microarrays to analyze the transcriptome of mouse SCNT embryos during the first two cell cycles. We identified a large number of genes mis-expressed in SCNT embryos. We found that genes involved in transcription and regulation of transcription are prominent among affected genes, and thus may be particularly difficult to reprogram, and these likely cause a ripple effect that alters the transcriptome of many other functions, including oxidative phosphorylation, transport across membrane, and mRNA transport and processing. Interestingly, we also uncovered widespread alterations in the maternal (i.e. non transcribed) mRNA population of SCNT embryos. We conclude that gene expression in early SCNT embryos is grossly abnormal, and that this is at least in part the result of incomplete reprogramming of transcription factor genes.
Tough beginnings: alterations in the transcriptome of cloned embryos during the first two cell cycles.
No sample metadata fields
View SamplesCaspase-1 activation senses metabolic danger-associated molecular patterns and mediates the initiation of inflammation. Here, we reported that caspase-1 contributes to hyperlipidemia-induced modulation of vascular cell gene expression during early atherosclerosis in vivo. Our results demonstrate the therapeutic potential of caspase-1 inhibition in the treatment of cardiovascular diseases.
Mitochondrial Reactive Oxygen Species Mediate Lysophosphatidylcholine-Induced Endothelial Cell Activation.
Sex, Age, Specimen part
View SamplesInterleukin-17 (IL-17)-secreting T helper 17 cells (Th17) are a recently identified CD4+ T helper subset that has been implicated in various inflammatory and autoimmune diseases. The issue of whether interleukin-17A (IL-17) contributes to hyperlipidemia-induced aortic endothelial cell activation remained unknown. Here, we reported that IL-17 contributes to hyperlipidemia-induced modulation of vascular cell gene expression during early atherosclerosis in vivo. Our results has shed lights onto the role of IL-17 on EC biology and has provided important insights for future development of novel therapeutics for early intervention of cardiovascular diseases and other inflammatory diseases.
Interleukin-17A Promotes Aortic Endothelial Cell Activation via Transcriptionally and Post-translationally Activating p38 Mitogen-activated Protein Kinase (MAPK) Pathway.
Sex, Age, Specimen part
View SamplesTranscriptional activation in mammalian embryos occurs in a stepwise manner. In mice, it begins at the late one-cell stage, followed by a minor wave of activation at the early two-cell stage, and then the major genome activation (MGA) at the late two-cell stage. Cellular homeostasis, metabolism, cell cycle, and developmental events are orchestrated before MGA by time-dependent changes in the array of maternal transcripts being translated (i.e., the translatome). Despite the importance of maternal mRNA and its correct recruitment for development, neither the array of recruited mRNA nor the regulatory mechanisms operating have been well cheracterized. We present the first comprehensive analysis of changes in the maternal component of the zygotic translatome during the transition from oocyte to late one-cell stage embryo, revealing global transitions in the functional classes of translated maternal mRNAs, and apparent changes in the underlying cis-regulatory mechanisms.
Analysis of polysomal mRNA populations of mouse oocytes and zygotes: dynamic changes in maternal mRNA utilization and function.
No sample metadata fields
View SamplesNon-syndromic facial asymmetry is commonly found in dentofacial deformity populations with skeletal malocclusions. Asymmetry of this type may result from imbalanced growth and function of both the jaw and associated muscles. Among the multiple genes that interact to affect the craniofacial musculoskeletal complex during pre and postnatal growth and development, NODAL signaling pathwy (NSP) genes are active in adult skeletal muscle and may be key factors in development, growth and maintenance of facial asymmetry. It is of interest to determine whether expression of NODAL pathway genes might differ in masseter muscles between individuals with malocclusion that have facial asymmetry and normal symmetry.
Nodal pathway genes are down-regulated in facial asymmetry.
Sex, Age, Specimen part, Race, Subject
View SamplesOver the last decade, small noncoding RNA molecules such as microRNAs (miRNAs) have emerged as critical regulators in the expression and function of eukaryotic genomes. It has been suggested that viral infections and neurological disease outcome may also be shaped by the influence of small RNAs. This has prompted us to suggest that HIV infection alters the endogenous miRNA expression patterns, thereby contributing to neuronal deregulation and AIDS dementia. Therefore, using primary cultures and neuronal cell lines, we examined the impact of a viral protein (HIV-1 Tat) on the expression of miRNAs due to its characteristic features such as release from the infected cells and taken up by noninfected cells. Using microRNA array assay, we demonstrated that Tat deregulates the levels of several miRNAs. Interestingly, miR-34a was among the most highly induced miRNAs in Tat-treated neurons. Tat also decreases the levels of miR-34a target genes such as CREB protein as shown by real time PCR. The effect of Tat was neutralized in the presence of anti-miR-34a. Using in situ hybridization assay, we found that the levels of miR-34a increase in Tat transgenic mice when compared with the parental mice. Therefore, we conclude that deregulation of neuronal functions by HIV-1 Tat protein is miRNA-dependent.
HIV-1 Tat protein promotes neuronal dysfunction through disruption of microRNAs.
Specimen part, Cell line, Treatment
View SamplesStudies have shown that HIV-infected patients develop neurocognitive disorders characterized by neuronal dysfunction. The lack of productive infection of neurons by HIV suggests that viral and cellular proteins, with neurotoxic activities, released from HIV-1-infected target cells can cause this neuronal deregulation. The viral protein R (Vpr), a protein encoded by HIV-1, has been shown to alter the expression of various important cytokines and inflammatory proteins in infected and uninfected cells; however the mechanisms involved remain unclear. Using a human neuronal cell line, we found that Vpr can be taken up by neurons causing: (i) deregulation of calcium homeostasis, (ii) endoplasmic reticulum-calcium release, (iii) activation of the oxidative stress pathway, (iv) mitochondrial dysfunction and v- synaptic retraction. In search for the cellular factors involved, we performed microRNAs and gene array assays using human neurons (primary cultures or cell line, SH-SY5Y) that we treated with recombinant Vpr proteins. Interestingly, Vpr deregulates the levels of several microRNAs (e.g. miR-34a) and their target genes (e.g. CREB), which could lead to neuronal dysfunctions. Therefore, we conclude that Vpr plays a major role in neuronal dysfunction through deregulating microRNAs and their target genes, a phenomenon that could lead to the development of neurocognitive disorders.
Deregulation of microRNAs by HIV-1 Vpr protein leads to the development of neurocognitive disorders.
Specimen part, Cell line, Treatment
View SamplesContinuous stress caused by smoking induces changes in the cell population of small airway epithelium, with basal cell hyperplasia and goblet cell metaplasia at the expense of ciliated cells, and there is now compiling evidence that basal cells play a key role in the early pathogenesis of Chronic Obtructive Pulmonary Disease (COPD).
Microarray analysis identifies defects in regenerative and immune response pathways in COPD airway basal cells.
Specimen part, Disease stage
View Samples