This SuperSeries is composed of the SubSeries listed below.
A dichotomy of gene regulatory associations during the activated B-cell to plasmablast transition.
Specimen part, Cell line, Treatment
View SamplesPlasma cells (PCs) as effectors of humoral immunity produce immunoglobulins to match pathogenic insult. However, emerging data suggests more diverse roles for PCs as regulators of immune and inflammatory responses via secretion of factors other than immunoglobulins. The extent to which such responses are pre-programmed in B-lineage cells or can be induced in PCs by the microenvironment is unknown. Here we dissect the impact of IFNs on the regulatory networks of human plasma cells. We show that core PC programs are unaffected, while PCs respond to IFNs with distinctive transcriptional responses. The ISG15-system emerges as a major transcriptional output induced in a sustained fashion by IFN- in PCs and linked both to intracellular conjugation and ISG15 secretion. This leads to the identification of ISG15-secreting plasmablasts/PCs in patients with active SLE. Thus ISG15-secreting PCs represent a distinct pro-inflammatory PC subset providing an immunoglobulin-independent mechanism of PC action in human autoimmunity
Network Analysis Identifies Proinflammatory Plasma Cell Polarization for Secretion of ISG15 in Human Autoimmunity.
Sex, Specimen part
View SamplesThe activated B-cell (ABC) to plasmablast transition is the cusp of antibody secreting cell (ASC) differentiation but is incompletely defined. We apply expression time-courses, parsimonious gene correlation network analysis, and ChIP-seq to explore this in human cells. The transition initiates with input signal loss leading within hours from cell growth dominant programs to enhanced proliferation, accompanied from 24h by ER-stress response, secretory optimization and upregulation of ASC features. Clustering of genomic occupancy for ASC transcription factors (TFs) IRF4, BLIMP1 and XBP1 with CTCF and histone marks defines distinct patterns for each factor in plasmablasts. Integrating TF-associated clusters and modular gene expression identifies a dichotomy: XBP1 and IRF4 significantly link to gene modules induced in plasmablasts, but not to modules of repressed genes, while BLIMP1 links to modules of ABC genes repressed in plasmablasts but is not significantly associated with modules induced in plasmablasts. Pharmacological inhibition of the G9A (EHMT2) histone-methytransferase, a BLIMP1 co-factor that catalyzes repressive H3K9me2 marks, leaves functional ASC differentiation intact but de-represses ABC-state genes. Thus, in human plasmablasts IRF4 and XBP1 emerge as the dominant association with ASC gene expression, while BLIMP1 links to repressed modules with particular focus in repression of the B-cell activation state.
A dichotomy of gene regulatory associations during the activated B-cell to plasmablast transition.
Specimen part
View SamplesGene expression profiling of B-cells from a model differentiation series: from Nave B-cells, through a proliferative plasmablast stage to long-lived antibody secreting plasma cells.
In vitro generation of long-lived human plasma cells.
Sex, Specimen part
View SamplesThe unfolded protein response (UPR) and activation of XBP1 is necessary for high secretory efficiency and functional differentiation of antibody secreting cells (ASCs). The UPR additionally includes a branch in which membrane-bound transcription factors, exemplified by ATF6, undergo intramembrane-proteolysis by the sequential action of site-1 (MBTPS1/S1P) and site-2 proteases (MBTPS2/S2P) and release of the cytoplasmic domain as an active transcription factor. Such regulation is shared with a family of CREB3-related transcription factors and sterol regulatory element-binding proteins (SREBPs). Of these, we identify that the CREB3 family member CREB3L2 is strongly induced and activated during the transition from B-cell to plasma cell state. Inhibition of site-1 protease leads to a profound reduction in plasmablast number linked to induction of autophagy. Plasmablasts generated in the presence of site-1 protease inhibitor segregated into CD38high and CD38low populations, the latter characterized by a marked reduction in the capacity to secrete IgG. Site-1 protease inhibition is accompanied by a distinctive change in gene expression associated with amino acid synthesis, steroid and fatty acid synthesis pathways. These result demonstrate that transcriptional control of metabolic programs necessary for secretory activity can be targeted via site-1 protease inhibition during ASC differentiation.
Site-1 protease function is essential for the generation of antibody secreting cells and reprogramming for secretory activity.
Sex, Specimen part
View SamplesThe major aetiological risk factor for Barrett's oesophagus and oesophageal adenocarcinoma is gastroesophageal reflux. This study's aim was to identify genes involved in the celular response to reflux in vitro. The Barretts oesophagus cell line, CP-A hTERT, was exposed to media with acid, deoxycholic acid or a primary bile salt mixture. RNA expression was compared with controls on Affymetrix U133 Plus 2.0 arrays. In CP-A hTERT, the greatest number of changes in gene expression was observed after treatment with deoxycholic acid, pH 4.5; 152 genes were up-regulated at 2 hours (91 at 6 hours) and 10 down-regulated at 2 hours (34 at 6 hours). 12 genes were identified and were subsequently assessed in patients with non-erosive reflux disease, oesophagitis, Barrett's oesophagus and oesophageal adenocarcinoma
No associated publication
No sample metadata fields
View SamplesExpression data derived from this analysis was used to compare expression signatures between genomic subgroups identified from DNA copy number analysis.
Genomic Subtypes of Non-invasive Bladder Cancer with Distinct Metabolic Profile and Female Gender Bias in KDM6A Mutation Frequency.
Sex, Age
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The transcription factor ABI4 Is required for the ascorbic acid-dependent regulation of growth and regulation of jasmonate-dependent defense signaling pathways in Arabidopsis.
Age, Specimen part
View SamplesWhen faced with clinical symptoms of scarring alopecia the standard diagnostic pathway involves a scalp biopsy which is an invasive and expensive procedure. Furthermore, clinical activity of scarring alopecias is often difficult to assess as symptoms of permanent damage and signs of activity can overlap or be difficult to distinguish. Here we report that gene expression analysis of only a small number of hair follicles (HF) plucked from lesional areas of the scalp is sufficient to characterise chronic discoid lupus erythematosus (CDLE). Lesional and non-lesional HFs were extracted from the scalp of patients with CDLE, psoriasis and healthy controls. The expression profile from CDLE HFs coincides with published profiles of CDLE from skin biopsy and was consistent with histopathological diagnostic features of CDLE.
No associated publication
Sex, Specimen part, Disease, Disease stage
View SamplesThe role of abscisic acid (ABA) signalling in the ascorbic acid (AA)-dependent control of plant growth and defence was determined using the vtc1 and vtc2 mutants, which have impaired ascorbic acid synthesis, and in the abi4 mutant that is impaired in ABA-signalling. ABA levels were increase in the mutants relative to the wild type (Col0). Like vtc1 the vtc2 mutants have a slow growth relative to Col0. However, the wild type phenotype is restored in the abi4vtc2 double mutant. Similarly, the sugar sensing phenotype of in the abi4 is reversed in the abi4vtc2 double mutant. The vtc1 and vtc2 leaf transcriptomes show up to 70 % homology with abi4. Of the transcripts that are altered in the mutants a relative to Col0, only a small number are reversed in the abi4vtc2 double mutants relative to either abi4 or vtc2. We conclude that AA controls growth via an ABA and abi4-dependent signalling pathway. The vtc and abi4 mutants have enhanced glutathione levels and common redox signalling pathways leading to similar gene expression patterns.
The transcription factor ABI4 Is required for the ascorbic acid-dependent regulation of growth and regulation of jasmonate-dependent defense signaling pathways in Arabidopsis.
Age, Specimen part
View Samples