Mice lacking topoisomerase II (Top II) are known to exhibit a perinatal death phenotype. In the current study, transcription profiles of the brains of wild type and top2 knockout mouse embryos were generated. Surprisingly, only a small number (1-4%) of genes were affected in top2 knockout embryos. However, the expression of nearly 30% of developmentally regulated genes was either up- or down-regulated.
Role of topoisomerase IIbeta in the expression of developmentally regulated genes.
Sex, Specimen part
View SamplesRNA from wt and SIN1 knock-out MEF cell lines were compared
mTORC2 Responds to Glutamine Catabolite Levels to Modulate the Hexosamine Biosynthesis Enzyme GFAT1.
Specimen part
View SamplesLatent HIV-1 infection represents a barrier to virus eradication as latent HIV-1 is impervious to the effects of antiretroviral drugs and can avoid detection by the host immune system. Strategies to clear latent HIV-1 infection in patients have so far failed in clinical trials to increase the decay rate of the latent reservoir underscoring the need for continued study of HIV-1 latency. In this study, a genome-wide RNAi screen was performed to probe cellular factors involved in maintaining HIV-1 latency in HeLa cells latently infected with an HIV-1 reporter virus.
No associated publication
Specimen part, Cell line
View SamplesThere are limited studies attempting to correlate the expression changes in oral squamous cell carcinoma with clinically relevant variables. We determined the gene expression profile of 16 tumor and 4 normal tissues from 16 patients by means of Affymetrix Hu133A GeneChips. The hybridized RNA was isolated from cells obtained with laser capture microdissection, then was amplified and labeled using T7 polymerase-based in vitro transcription. The expression of 53 genes was found to differ significantly (33 upregulated, 20 downregulated) in normal versus tumor tissues under two independent statistical methods. The expression changes in four selected genes (LGALS1, MMP1, LAGY, and KRT4) were confirmed with reverse transcriptase polymerase chain reaction. Two-dimensional hierarchical clustering of the 53 genes resulted in the samples clustering according to the extent of tumor infiltration: normal epithelial tissue, tumors less than or equal to 4 cm in dimension, and tumors more than 4 cm in dimension (P=0.0014). The same pattern of clustering was also observed for the 20 downregulated genes. We did not observe any associations with lymph node metastasis (P=0.097).
No associated publication
Sex, Age
View SamplesExpression data from human induced pluripotent stem cells(iPSCs) and Human foreskin fibroblasts (HFFs) with treatment actinomycin D
Global analysis reveals multiple pathways for unique regulation of mRNA decay in induced pluripotent stem cells.
Specimen part, Treatment, Time
View SamplesAlmost all cellular mRNAs terminate in a 3 poly(A) tail, the removal of which can induce both translational silencing and mRNA decay. Mammalian cells encode many poly(A)-specific exoribonucleases but their individual roles are poorly understood. Here, we undertook an analysis of the role of PARN deadenylase in mouse myoblasts using global measurements of mRNA decay rates. Our results reveal that a discrete set of mRNAs exhibit altered mRNA decay as a result of PARN depletion and that stabilization is associated with increased poly(A) tail length and translation. We determined that stabilization of mRNAs does not generally result in their increased abundance supporting the idea that mRNA decay is coupled to transcription. Importantly, PARN knockdown has wide ranging effects on gene expression that specifically impact the extracellular matrix and cell migration. Finally, although PARN has its own unique target transcripts it also influences some genes whose expression is modulated by other deadenylases.
The PARN deadenylase targets a discrete set of mRNAs for decay and regulates cell motility in mouse myoblasts.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Systematic analysis of cis-elements in unstable mRNAs demonstrates that CUGBP1 is a key regulator of mRNA decay in muscle cells.
Specimen part, Cell line
View SamplesDramatic changes in gene expression occur in response to extracellular stimuli and during differentiation. Although transcriptional effects are important, alterations in mRNA decay also play a major role in achieving rapid and massive changes in mRNA abundance. Moreover, just as transcription factor activity varies between different cell types, the factors influencing mRNA decay are also cell-type specific. We have established the rates of decay for over 7000 transcripts expressed in mouse C2C12 myoblasts.
Systematic analysis of cis-elements in unstable mRNAs demonstrates that CUGBP1 is a key regulator of mRNA decay in muscle cells.
Specimen part, Cell line
View SamplesWe harvested the heart from transgenic mice with cardiac specific overexpression of Sirt1 (Tg-Sirt1) and non-transgenic (NTg) control littermate at 3 months of age and then microarray analyses were conducted.
Sirt1 regulates aging and resistance to oxidative stress in the heart.
No sample metadata fields
View SamplesDramatic changes in gene expression occur in response to extracellular stimuli and during differentiation. Although transcriptional effects are important, alterations in mRNA decay also play a major role in achieving rapid and massive changes in mRNA abundance. Moreover, just as transcription factor activity varies between different cell types, the factors influencing mRNA decay are also cell-type specific.GREs are recognized by CUGBP1, an RNA-binding protein and instability factor whose function is affected in several neuromuscular diseases. To dectect the mRNA associated with CUGBP1, we utilized RNA immunoprecipitation followed by microarray (RIP-Chip) to identify CUGBP1-associated transcripts.
Systematic analysis of cis-elements in unstable mRNAs demonstrates that CUGBP1 is a key regulator of mRNA decay in muscle cells.
Specimen part
View Samples