DNA methyltransferase 3A (DNMT3A) is frequently mutated in hematological cancers; however, the underlying oncogenic mechanism remains elusive. Here, we report that DNMT3A mutational hotspot at Arg882 (DNMT3A R882H) cooperates with NRAS mutation to transform hematopoietic stem/progenitor cells and induce acute leukemia development. Mechanistically, DNMT3A R882H directly binds to and potentiates transactivation of stemness genes critical for leukemogenicity including Meis1, Mn1 and Hoxa gene cluster. DNMT3A R882H induces focal epigenetic alterations, including CpG hypomethylation and concurrent gain of active histone modifications, at cis-regulatory elements such as enhancers to facilitate gene transcription. CRISPR/Cas9-mediated ablation of a putative Meis1 enhancer carrying DNMT3A R882H-induced DNA hypomethylation impairs Meis1 expression. Importantly, DNMT3A R882H-induced gene expression programs can be repressed through Dot1l inhibition, providing an attractive therapeutic strategy for DNMT3A-mutated leukemias.
Epigenetic Perturbations by Arg882-Mutated DNMT3A Potentiate Aberrant Stem Cell Gene-Expression Program and Acute Leukemia Development.
Specimen part, Cell line, Treatment, Time
View SamplesGene expression profiling in soybean under aluminum stress: genes differentially expressed between Al-tolerant and Al-sensitive genotypes.
Mechanisms of magnesium amelioration of aluminum toxicity in soybean at the gene expression level.
Specimen part, Treatment
View SamplesGene expression profiling in soybean under aluminum stress: mechanisms of magnesium amelioration of aluminum toxicity at gene expression level.
Mechanisms of magnesium amelioration of aluminum toxicity in soybean at the gene expression level.
Specimen part, Treatment
View SamplesGene expression profiling in soybean under aluminum stress: Transcriptome response to Al stress in roots of Al-tolerant genotype (PI 416937).
Identification of Aluminum Responsive Genes in Al-Tolerant Soybean Line PI 416937.
Specimen part
View SamplesDNA Methyltransferase 3A (DNMT3A) is frequently mutated in various hematopoietic malignancies; however, the underlying oncogenic mechanisms remain elusive. Here, we report that DNMT3A mutational hotspot at Arg882 (i.e., DNMT3A-R882H) cooperates with constitutively activated RAS in transforming murine hematopoietic stem/progenitor cells (HSPCs) ex vivo and inducing acute leukemias in vivo. DNMT3A-R882H potentiates aberrant transactivation of stemness gene expression programs, notably transcription factors Meis1, Hox-A, Mn1 and Mycn. Mechanistically, R882-mutated DNMT3A directly binds to cis-regulatory elements of these genes and induces focal CpG hypomethylation reminiscent of what was seen in human leukemias bearing DNMT3A R882 mutation. Furthermore, DNMT3A-R882H induced DNA hypomethylation facilitates gene enhancer/promoter activation and recruitment of Dot1l-associated transcription elongation machineries. Inactivation of Dot1l represses DNMT3AR882H-mediated stem cell gene dysregulation and acute leukemogenicity.
Epigenetic Perturbations by Arg882-Mutated DNMT3A Potentiate Aberrant Stem Cell Gene-Expression Program and Acute Leukemia Development.
Specimen part, Time
View SamplesClinical Significance: Understanding the differences in colorectal cancer (CRC) aggressiveness and clinical outcomes in relation to tumor stage and different molecular subsets is at most important for designing treatment regimens. However, molecular signatures for specific phenotypic subsets that predict the aggressiveness and clinical outcomes of CRC, specifically in advanced disease stage are lacking. Therefore, for the first time, the current study has identified a set of molecular markers that are associated with aggressive Stage III CRCs that exhibited microsatellite stable and mutant p53 phenotypic features. These findings might aid in designing aggressive treatment regimens and help to provide insights into the development of novel therapeutic targets.
Prognostic significance and gene expression profiles of p53 mutations in microsatellite-stable stage III colorectal adenocarcinomas.
Specimen part, Disease, Disease stage
View SamplesIdentification of genes regulated by RANK RVVY motif in macrophages by gene expression analysis of TNFR1-/-R2-/- BMMs expressing a chimeric receptor consisting of the external domain of mouse TNFR1 linked to the transmembrane and intracellular domain of mouse RANK (WT) and NFR1-/-R2-/- BMMs expressing a chimeric receptor consisting of the external domain of mouse TNFR1 linked to the transmembrane and intracellular domain of mouse RANK bearing inactivating mutations in the IVVY motif (Mu).
No associated publication
Specimen part
View SamplesBy carrying out a systematic structure/function study of the RANK cytoplasmic domain, we previously identified a specific 4-a.a. RANK motif (IVVY535-538) which plays a critical role in osteoclastogenesis by mediating commitment of macrophages to the osteoclast lineage. We have recently validated the role of this IVVY motif in osteoclastogenesis in vivo by generating knockin (KI) mice bearing inactivating mutations in the RANK IVVY motif. This microarray experiment was performed to determine whether the IVVY motif is involved in regulating gene expression in osteoclastogenesis.
No associated publication
Specimen part
View SamplesGlobal energy balance in mammals is controlled by the actions of circulating hormones that coordinate fuel production and utilization in metabolically active tissues. Bone-derived osteocalcin, in its undercarboxylated, hormonal form, regulates fat deposition and is a potent insulin secretagogue. Here, we show that insulin receptor (IR) signaling in osteoblasts controls osteoblast development and osteocalcin expression by suppressing the Runx2 inhibitor Twist-2. Mice lacking IR in osteoblasts have low circulating undercarboxylated osteocalcin and reduced bone acquisition due to decreased bone formation and deficient numbers of osteoblasts. With age, these mice develop marked peripheral adiposity and hyperglycemia accompanied by severe glucose intolerance and insulin resistance. The metabolic abnormalities in these mice are improved by infusion of exogenous under-carboxylated osteocalcin. These results indicate the existence of a bone-pancreas endocrine loop through which insulin signaling in the osteoblast ensures osteoblast differentiation and stimulates osteocalcin production, which in turn regulates insulin sensitivity and pancreatic insulin secretion to control glucose homeostasis.
Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition.
Specimen part, Time
View SamplesThis is to compare the gene expression profile of Th1 and Th17 cells.
Late developmental plasticity in the T helper 17 lineage.
No sample metadata fields
View Samples