Tha altered biological pathways in Epidermolysis bulloda simplex, a rare monogenetic skin disease, have not been well characterized. Thus, the goal of this study is to characterize the expression profile of EBS patients compared with normal subjects using genomic expression analyses. Microarray analyses were performed with RNA isolated from skin biopsies. Robust multiarray analysis (RMA) normalization and Smyths moderated t test were used to select differentially expressed genes. Expression profiling comparisons show that 28 genes are differentially expressed in EBS patients compared to control subjects and 41 genes in EBS-DM compared to their matched controls. Nine genes involved in fatty acid metabolism and 2 genes in epidermal keratinisation are common altered expressed genes between the two subgroups. These two biological pathways contribute both to the formation of the cell envelope barrier and seem to be defective in the severe EBS phenotype. This study demonstrates, for the first time, the relevance of metabolic cluster, specifically fatty acid metabolism in EBS biology. Difference of expression for three (AWAT2, ELOVL , and SPRR4 ) of the five selected genes were validated using real-time reverse transcriptionpolymerase chain reaction. To our knowledge, the distinctive pattern of gene expression that characterizes EBS versus healthy skin tissue has never been reported.
Expression signature of epidermolysis bullosa simplex.
Specimen part, Disease, Disease stage
View SamplesAsthma pathogenesis and susceptibility involves a complex interplay between genetic and environmental factors.
Functional classes of bronchial mucosa genes that are differentially expressed in asthma.
Sex, Specimen part
View SamplesThe implication of alveolar macrophages (AM) in asthma, a Th2 disease, has not been well characterized. Thus, the goal of this study is to better characterize AM phenotype of allergic asthmatic compared with normal subjects using genomic expression analyses. Microarray analyses were performed with AM isolated from bronchoalveolar lavage. Robust multiarray analysis (RMA) normalization and Smyths moderated t test were used to select differentially expressed genes. Fifty differentially expressed genes were identified. Nineteen have been classified in categories linked to stress or immune responses and among them; nine are part of the heat shock protein (HSP) family. Difference of expression for three (HSPD1, PRNP, SERPINH1) of the five selected genes were validated using real-time reverse transcriptionpolymerase chain reaction. Enzyme linked immunosorbent assay was used to measure the protein level of heat shock protein 60 (HSP60), the protein encoded by HSPD1, and showed difference in AM protein level between allergic asthmatic and control subjects. In summary, this study suggests that HSP gene family, particularly HSP60, is involved in AM functions in a context of allergic asthma. These results also support the involvement of AM immune functions in the development of an allergic asthmatic response.
Alveolar macrophages in allergic asthma: an expression signature characterized by heat shock protein pathways.
Specimen part, Disease, Disease stage
View SamplesThe goal of this study is to characterize the expression profile of Epidermolysis bullosa simplex-mottled pigmentation (EBS-MP) patient compared with normal subjects using genomic expression analyses. Microarray analyses were performed with RNA isolated from skin biopsies. Robust multiarray analysis (RMA) normalization and Smyths moderated t test were used to select differentially expressed genes. Expression profiling comparisons show that 52 genes are differentially expressed in EBS-MP patients compared to control subjects. Difference of expression for three genes (TYR, CCL22 , and ACVR1C ) was validated using real-time reverse transcriptionpolymerase chain reaction. Twelve genes were related to lipid biosynthesis process, two to keratinisation and skin pigmentation, Nineteen to cell growth and apoptosis, five to immune response and fourteen to predicted or less known function cluster. To our knowledge, the distinctive pattern of gene expression that characterizes EBS-MP versus healthy skin tissue has never been reported.
No associated publication
Disease, Disease stage
View SamplesAllergic asthma is a complex trait. Several approaches have been used to identify biomarkers involved in this disease. This study aimed at demonstrating the relevance and validity of microarrays in the definition of allergic asthma expression pattern. The authors compared the transcript expressions of bronchial biopsy of 2 different microarray experiments done 2 years apart, both including nonallergic healthy and allergic asthmatic subjects (n = 4 in each experiment). U95Av2 and U133A GeneChips detected respectively 89 and 40 differentially expressed genes. Fifty-five percent of the U133A genes were previously identified with the U95Av2 arrays. The immune signaling molecules and the proteolytic enzymes were the most preserved categories between the 2 experiments, because 3/4 of the genes identified by the U133A were also significant in the U95Av2 study for both categories. These results demonstrate the relevance of microarray experiments using bronchial tissues in allergic asthma. The comparison of these GeneChip studies suggests that earlier microarray results are as relevant as actual ones to target new genes of interest, particularly in function categories linked to the studied disease. Moreover, it demonstrates that microarrays are a valuable technology to target novel allergic asthma pathways as well as biomarkers.
A comparison of two sets of microarray experiments to define allergic asthma expression pattern.
Specimen part, Disease
View SamplesWe have previously shown that Il1a-knockout (KO) mice exhibit rapid (at day 1) and persistent improvements in locomotion associated with reduced lesion volume compared with Il1b-KO mice and C57BL/6 controls after traumatic spinal cord injury (SCI). To investigate the mechanism by which Il1a mediates its detrimental effect, we analyzed the transcriptome of the injured spinal cord of Il1a-KO, Il1b-KO and C57BL/6 mice at 24 hours after SCI using GeneChip microarrays.
IL-1α Gene Deletion Protects Oligodendrocytes after Spinal Cord Injury through Upregulation of the Survival Factor Tox3.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
DNA methylation fingerprint of neuroblastoma reveals new biological and clinical insights.
Specimen part
View SamplesDNA methylation changes in neuroblastoma, a clinically-heterogeneous pediatric tumor, have been described essentially in promoter regions. We analyzed the DNA methylome of neuroblastoma using high-density microarrays and observed differential methylation not only in promoters but also in intragenic and intergenic regions at both CpG and non-CpG sites. These epigenetic changes showed a non-random distribution relative functional chromatin domains, and targeted development and cancer-related genes, relevant for neuroblastoma pathogenesis. CCND1, a gene overexpressed in neuroblastoma, showed hypomethylation of gene-body and upstream regulatory regions. Furthermore, tumors with diverse clinical-risk showed clear differences affecting CpG and, remarkably, non-CpG sites. Non-CpG methylation was present in clinically-favorable tumors and affected genes such as ALK, where non-CpG methylation correlated with low gene expression. Finally, we identified CpG and non-CpG methylation signatures which correlated with patients age at time-points relevant for neuroblastoma clinical behavior, and targeted genes related to neural development and neural crest regulatory network
DNA methylation fingerprint of neuroblastoma reveals new biological and clinical insights.
Specimen part
View SamplesSteroid hormones regulate essential physiological processes and inadequate levels are associated with various pathological conditions. In testosterone-producing Leydig cells, steroidogenesis is strongly stimulated by LH via its receptor leading to increased cAMP production and expression of the steroidogenic acute regulatory (STAR) protein, which is essential for the initiation of steroidogenesis. Leydig cell steroidogenesis then passively decreases following the rapid degradation of cAMP into AMP by phosphodiesterases. In this study, we show that AMP-activated protein kinase (AMPK) is activated following cAMP breakdown in MA-10 and MLTC-1 Leydig cells. Activated AMPK then actively inhibits cAMP-induced steroidogenesis by repressing the expression of key regulators of steroidogenesis including Star and Nr4a1. Similar results were obtained in Y-1 adrenal cells and in the constitutive steroidogenic cell line R2C. Our data identify AMPK as an active repressor of steroid hormone biosynthesis in steroidogenic cells that is essential to preserve cellular energy and prevent excess steroid production.
A cell-autonomous molecular cascade initiated by AMP-activated protein kinase represses steroidogenesis.
Specimen part, Treatment
View SamplesSymptoms of the dopamine dysregulation syndrome in patients with Parkinsons disease (PD) are close to those observed in psychostimulant addiction. This suggests that dopamine replacement therapy shares some properties with potentially addictive drugs. A remaining challenge is to understand the neuroadaptations leading to compulsive dopaminergic medication use.
No associated publication
Sex, Specimen part, Treatment
View Samples