We explored the transcriptional response to parasitoid attack in Drosophila larvae at nine time points following parasitism, hybridizing five biologic replicates per time point to whole-genome microarrays for both parasitized and control larvae. We found significantly different expression profiles for 159 probe sets (representing genes), and we classified them into 16 clusters based on patterns of co-expression. A series of functional annotations were nonrandomly associated with different clusters, including several involving immunity and related functions. We also identified nonrandom associations of transcription factor binding sites for three main regulators of innate immune responses (GATA/srp-like, NF-kappaB/Rel-like and Stat), as well as a novel putative binding site for an unknown transcription factor. The appearance or absence of candidate genes previously associated with insect immunity in our differentially expressed gene set was surveyed
Genome-wide gene expression in response to parasitoid attack in Drosophila.
Time
View SamplesArabidopsis thaliana is a main model species for plant science, especially for such branches as molecular biology, genetics and genomics. We present here first genome-wide analysis of expression profiles across different organs and developmental stages using high-throughput transcriptome sequencing (RNA-seq). To determine whether the developmental map represented the majority of the expressed genes, we analyzed gene expression under various abiotic stress conditions.
No associated publication
Age, Specimen part, Treatment
View SamplesFloral transition is a critical event in the life cycle of a flowering plant as it determines its reproductive success. Despite extensive studies of specific genes that regulate this process, the global changes in transcript expression profiles at the point when a vegetative meristem transitions into an inflorescence have not been described. In this study we analyzed gene expression during Arabidopsis thaliana meristem development from day 7 to 16 after germination in one-day increments. The dynamics of the expression of the main flowering regulators were consistent with previous reports: notably, the expression of FLOWERING LOCUS C (FLC) decreased over the course of the time series while expression of LEAFY (LFY) increased. This analysis revealed a developmental time point between 10 and 12 days after germination where FLC expression had decreased but LFY expression had not yet increased, which was characterized by a peak in the number of differentially expressed genes. GO enrichment analysis of these genes identified an overrepresentation of genes related to the cell cycle, suggesting that during transition to the flowering stage a change in dynamics of cell division takes place. In particular, we hypothesize that a subset of the meristematic cells experiences a forced exit from G0 at day 10. Finally, we observed an acceleration of the cell cycle at day 11, which may be linked to meristem reorganization preceding activation of LFY.
No associated publication
Age, Specimen part
View SamplesHuman cell line HCT116 incubated with Myxothiazol for 5 or 17 hours
A sustained deficiency of mitochondrial respiratory complex III induces an apoptotic cell death through the p53-mediated inhibition of pro-survival activities of the activating transcription factor 4.
No sample metadata fields
View SamplesWe sequenced DGRP (Drosophila Genetic Reference Panel) line 208 for strand-specific RNA-seq in head, testis and ovary. The RNA-seq (2x150bp) data is intended to investigate the expression profiles of polymorphic duplications and de novo gene, as well as other lncRNAs.
No associated publication
Sex, Specimen part, Cell line
View SamplesRNA-Seq of EBV-positive B-lymphoblastoid cell line MP1 and EBV-positive Burkitt’s lymphoma cell line Raji
No associated publication
Sex, Age, Specimen part, Cell line
View Sampleseffect of overexpression of GATA-6 in P19 CL6 induced cells
Wnt2 is a direct downstream target of GATA6 during early cardiogenesis.
Cell line
View SamplesAxonal regeneration is enhanced by prior conditioning peripheral nerve lesions. Here we show that Xenopus dorsal root ganglia (DRGs) with attached peripheral nerves (PN-DRGs) can be conditioned in vitro, thereafter showing enhanced axonal growth in response to neurotrophins, similar to preparations conditioned by axotomy in vivo. In contrast to freshly dissected preparations, conditioned PN-DRGs show abundant neurotrophin-induced axonal growth in the presence of actinomycin D, suggesting synthesis of mRNA encoding proteins necessary for axonal elongation occurs during the conditioning period, and this was confirmed by oligonucleotide micro-array analysis.
No associated publication
Sex, Specimen part
View SamplesMALT lymphoma is characterized by t(11;18)(q21;q21)/API2-MALT1, t(1;14)(p22;q32)/BCL10-IGH and t(14;18)(q32;q21)/IGH-MALT1, which commonly activate the NF-B pathway. Gastric MALT lymphomas harboring such translocation do not respond to H. pylori eradication, while those without translocation can be cured by antibiotics. To understand the molecular mechanism of these different MALT lymphoma subgroups, we performed gene expression profiling analysis of 24 MALT lymphomas (15 translocation-positive, 9 translocation-negative). Gene set enrichment analysis (GSEA) of the NF-B target genes and 4394 additional gene sets covering various cellular pathways, biological processes and molecular functions showed that translocation-positive MALT lymphomas are characterized by an enhanced expression of NF-B target genes, particularly TLR6, CCR2, CD69 and BCL2, while translocation-negative cases were featured by active inflammatory and immune responses, such as IL8, CD86, CD28 and ICOS.
No associated publication
No sample metadata fields
View SamplesProper regulation of nuclear factor B (NF-B) transcriptional activity is required for normal lymphocyte function, and deregulated NF-B signaling can facilitate lymphomagenesis. We demonstrate that the API2-MALT1 fusion oncoprotein created by the recurrent t(11;18)(q21;q21) in mucosa-associated lymphoid tissue (MALT) lymphoma induces proteolytic cleavage of NF-Binducing kinase (NIK) at arginine 325. NIK cleavage requires the concerted actions of both fusion partners and generates a C-terminal NIK fragment that retains kinase activity and is resistant to proteasomal degradation. The resulting deregulated NIK activity is associated with constitutive noncanonical NF-B signaling, enhanced B cell adhesion, and apoptosis resistance. Our study reveals the gain-of-function proteolytic activity of a fusion oncoprotein and highlights the importance of the noncanonical NF-B pathway in B lymphoproliferative disease.
Cleavage of NIK by the API2-MALT1 fusion oncoprotein leads to noncanonical NF-kappaB activation.
No sample metadata fields
View Samples