determination of gene regulation by sterol and sphingolipid composition
Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology.
Sex
View SamplesThese Affymetrix data were used to determine the role of each non-essential subunit of the conserved Ccr4-Not complex in the control of gene expression in the yeast S. cerevisiae. The study was performed with cells growing exponentially in high glucose and with cells grown to glucose depletion. Specific patterns of gene de-regulation were observed upon deletion of any given subunit, revealing the specificity of each subunits function. Consistently, the purification of the Ccr4-Not complex through Caf40p by tandem affinity purification from wild-type cells or cells lacking individual subunits of the Ccr4-Not complex revealed that each subunit had a particular impact on complex integrity. Furthermore, the micro-arrays revealed that the role of each subunit was specific to the growth conditions. From the study of only two different growth conditions, revealing an impact of the Ccr4-Not complex on more than 85% of all studied genes, we can infer that the Ccr4-Not complex is important for expression of most of the yeast genome.
Specific roles for the Ccr4-Not complex subunits in expression of the genome.
No sample metadata fields
View SamplesExperiment Design:
No associated publication
No sample metadata fields
View SamplesThe crowns of the right maxillary molars were removed in 28 days old male Wistar rats (experimental). Gene expression patterns were examined in the periodontal ligaments (PDLs) of the ipsilateral and contralateral mandibular molars, three and fifteen days later. Rats whith no dental interventions served as controls.
No associated publication
Sex, Age, Specimen part
View SamplesPioneering studies within the last few years have allowed the in vitro expansion of tissue-specific adult stem cells from a variety of endoderm-derived organs, including the stomach, small intestine and colon. Here we derived organoids from mouse gallbladder tissue (gallbladder organoids), from mouse liver (including the extrahepatic biliary ducts and gallbladder; liver organoids) and from mouse small intestine tissue (intestinal organoids). RNA was prepared from these organoids and used to assay expression of 21,258 genes using Affymetrix gene expression arrays. RNA was also prepared from mouse gallbladder, liver and small intestine tissues and used to assay gene expression in these tissues. Finally, gallbladder organoids were induced to differentiate by removing R-spondin 1 and noggin from the culture media and subjected to gene expression array analysis.
R-spondin 1 and noggin facilitate expansion of resident stem cells from non-damaged gallbladders.
Specimen part
View SamplesInborn errors of lipid metabolism illustrate the importance of proper milk fat oxidation in newborn mammals. In the liver, a remarkable lipid catabolic competence is present at birth; however, it is unclear how this critical trait is acquired and regulated. In this work, we found that the genes required for milk lipid catabolism are already transcribed before birth in the term fetus (E19.5) and controlled by the peroxisome-proliferator activated receptor alpha (PPAR) in mouse liver. The developmental activity of PPAR strongly regulates fatty acid oxidation genes. Two days after birth (P2), during milk suckling, PPAR-null mice develop a congenital steatosis and milk protein oxidation is de-repressed to fuel an alternative energy pathway that maintains glucose homeostasis and postnatal growth. Our results demonstrate for the first time, the developmental role of PPAR in regulating the metabolic ability to use maternal milk as fuel in the early days of life.
Glucocorticoid receptor-PPARα axis in fetal mouse liver prepares neonates for milk lipid catabolism.
Specimen part
View SamplesInborn errors of lipid metabolism illustrate the importance of proper milk fat oxidation in newborn mammals. In the liver, a remarkable lipid catabolic competence is present at birth; however, it is unclear how this critical trait is acquired and regulated. In this work, we found that the genes required for milk lipid catabolism are already transcribed before birth in the term fetus (E19.5) and controlled by the peroxisome-proliferator activated receptor alpha (PPAR) in mouse liver. The developmental activity of PPAR strongly regulates fatty acid oxidation genes. Two days after birth (P2), during milk suckling, PPAR-null mice develop a congenital steatosis and milk protein oxidation is de-repressed to fuel an alternative energy pathway that maintains glucose homeostasis and postnatal growth. Our results demonstrate for the first time, the developmental role of PPAR in regulating the metabolic ability to use maternal milk as fuel in the early days of life.
Glucocorticoid receptor-PPARα axis in fetal mouse liver prepares neonates for milk lipid catabolism.
Sex, Specimen part
View SamplesThe microarray analysis was designed to test the effects of HES5.3 siRNAs, Atoh7 siRNAs and nt siRNAs on gene expression in embryonic chick retina.
A positive feedback loop between ATOH7 and a Notch effector regulates cell-cycle progression and neurogenesis in the retina.
Age, Specimen part
View SamplesWe performed a microarray experiment to assess the global changes in transcription occurring in leaves and roots of the vitamin B6 deficient pdx1.3 knockout mutant in comparison to WT. Vitamin B6 (pyridoxal 5-phosphate) is an essential cofactor of many metabolic enzymes. Plants biosynthesize the vitamin de novo employing two enzymes, pyridoxine synthase1 (PDX1) and PDX2. In Arabidopsis (Arabidopsis thaliana), there are two catalytically active paralogs of PDX1 (PDX1.1 and PDX1.3) producing the vitamin at comparable rates. Since single mutants are viable but the pdx1.1 pdx1.3 double mutant is lethal, the corresponding enzymes seem redundant.
Consequences of a deficit in vitamin B6 biosynthesis de novo for hormone homeostasis and root development in Arabidopsis.
Specimen part
View SamplesGene expression analyses were carried out to identify genes regulated by 17-beta estradiol (E2) and Hydroxytamoxifen (OHT) through GPR30 in SKBR3 cells, a breast cancer cell-line which expresses GPR30 but lacks Estrogen Receptor alpha or beta.
Estrogenic GPR30 signalling induces proliferation and migration of breast cancer cells through CTGF.
No sample metadata fields
View Samples