The goal of this study is to determine whether A1 adenosine receptor (ADORA1) plays a role in atherosclerosis development and its possible mechanisms. This dataset compares gene expression (aortas) of ADORA1 knockout mice to ADORA1+APOE double-knockout mice.
A₁ adenosine receptor deficiency or inhibition reduces atherosclerotic lesions in apolipoprotein E deficient mice.
Age, Specimen part
View SamplesAs a tissue-specific stem cell for chondrogenesis, synovium-derived stem cells (SDSCs) are a promising cell source for cartilage repair. However, a small biopsy can only provide a limited number of cells. Cell senescence from both in vitro expansion and donor age presents a big challenge for stem cell based cartilage regeneration. Here we found that expansion on decellularized extracellular matrix (dECM) full of three-dimensional nanostructured fibers provided SDSCs with unique surface profiles, low elasticity but large volume as well as fibroblast-like shape. dECM expanded SDSCs yielded large pellets with intensive staining of type II collagen and sulfated GAGs, which was supported by both biochemical data and real-time PCR results. Our results also hint at lower levels of inflammatory genes and how they might be responsible for enhanced chondrogenic differentiation in dECM expanded SDSCs. Despite an increase of type X collagen in chondrogenically induced cells, dECM expanded cells had significantly lower potential for endochondral bone formation. Both Wnt and MAPK signals were actively involved in both expansion and chondrogenic induction of dECM expanded cells. dECM expanded human SDSCs could be a potential cell source for autologous cartilage repair
No associated publication
No sample metadata fields
View SamplesPulmonary exposure to multiwalled carbon nanotubes (MWCNT) induces an inflammatory and rapid fibrotic response, although the long-term signaling mechanisms are unknown. The aim of this study was to examine the effects of 1, 10, 40, or 80 g MWCNT administered by pharyngeal aspiration on bronchoalveolar lavage (BAL) fluid for polymorphonuclear cell (PMN) infiltration, lactate dehydrogenase (LDH) activity, and lung histopathology for inflammatory and fibrotic responses in mouse lungs 1 mo, 6 mo, and 1 yr postexposure. Further, a 120-g crocidolite asbestos group was incorporated as a positive control for comparative purposes. Results showed that MWCNT increased BAL fluid LDH activity and PMN infiltration in a dose-dependent manner at all three postexposure times. Asbestos exposure elevated LDH activity at all 3 postexposure times and PMN infiltration at 1 mo and 6 mo postexposure. Pathological changes in the lung, the presence of MWCNT or asbestos, and fibrosis were noted at 40 and 80 g MWCNT and in asbestos-exposed mice at 1 yr postexposure. To determine potential signaling pathways involved with MWCNT-associated pathological changes in comparison to asbestos, up- and down-regulated gene expression was determined in lung tissue at 1 yr postexposure. Exposure to MWCNT tended to favor those pathways involved in immune responses, specifically T-cell responses, whereas exposure to asbestos tended to favor pathways involved in oxygen species production, electron transport, and cancer. Data indicate that MWCNT are biopersistent in the lung and induce inflammatory and fibrotic pathological alterations similar to those of crocidolite asbestos, but may reach these endpoints by different mechanisms.
Multiwalled carbon nanotube-induced pulmonary inflammatory and fibrotic responses and genomic changes following aspiration exposure in mice: A 1-year postexposure study.
Specimen part
View SamplesKAP1 (TRIM28) is a transcriptional regulator in embryonic development that controls stem cell self-renewal, chromatin organization and the DNA damage response, acting as an essential co-repressor for KRAB family zinc finger proteins (KRAB-ZNF). To gain insight into the function of this large gene family, we developed an antibody that recognizes the conserved zinc fingers linker region (ZnFL) in multiple KRAB-ZNF. Here we report that the expression of many KRAB-ZNF along with active SUMOlyated KAP1 is elevated widely in human breast cancers. KAP1 silencing in breast cancer cells reduced proliferation and inhibited the growth and metastasis of tumor xenografts. Conversely, KAP1 overexpression stimulated cell proliferation and tumor growth. In cells where KAP1 was silenced, we identified multiple downregulated genes linked to tumor progression and metastasis, including EREG/epiregulin, PTGS2/COX2, MMP1, MMP2 and CD44, along with downregulation of multiple KRAB-ZNF proteins. KAP1-dependent stabilization of KRAB-ZNF required direct interactions with KAP1. Together, our results show that KAP1-mediated stimulation of multiple KRAB-ZNF contributes to the growth and metastasis of breast cancer.
KAP1 promotes proliferation and metastatic progression of breast cancer cells.
Cell line
View SamplesNumerous studies have implicated changes in the Y chromosome in male cancers, however few have investigated the biological importance of Y chromosome non-coding RNAs. Here, we demonstrate a group of Y chromosome-expressed long non-coding RNAs (lncRNAs) involved in male non-small cell lung cancer (NSCLC) radiation sensitivity. Radiosensitive male NSCLC cell lines demonstrated a dose-dependent induction of linc-SPRY3-2/3/4 following irradiation, not observed in radioresistant male NSCLC cell lines. Cytogenetics revealed the loss of chromosome Y (LOY) in the radioresistant male NSCLC cell lines. Gain- and loss-of-function experiments indicated that linc-SPRY3-2/3/4 transcripts affect cell viability and apoptosis. UV Cross-linking and Immunoprecipitation (CLIP) and RNA stability assays identify IGF2BP3 as a binding partner for the linc-SPRY3-2/3/4 RNAs which alters the half-life of the anti-apoptotic HMGA2 mRNA as well as the oncogenic c-MYC mRNA. To assess the clinical relevance of these findings, we examined the presence of the Y chromosome in NSCLC tissue microarrays and the expression of linc-SPRY3-2/3/4 in NSCLC RNAseq and microarray data. We observed a negative correlation between the loss of the Y chromosome or linc-SPRY3-2/3/4 and overall survival. Thus, linc-SPRY3-2/3/4 expression and LOY could represent an important marker of radiation therapy in NSCLC.
Y Chromosome LncRNA Are Involved in Radiation Response of Male Non-Small Cell Lung Cancer Cells.
Specimen part, Cell line, Treatment
View SamplesPAPER 1:"Identification of novel subgroups of high-risk pediatric precursor B acute lymphoblastic leukemia (B-ALL) by unsupervised microarray analysis: clinical correlates and therapeutic implications. A Children's Oncology Group (COG) study."
Gene expression classifiers for relapse-free survival and minimal residual disease improve risk classification and outcome prediction in pediatric B-precursor acute lymphoblastic leukemia.
Sex, Specimen part, Race
View SamplesEquine herpesvirus 1 (EHV-1) is a major pathogen affecting equines worldwide and causes respiratory disease, abortion, and in some cases, neurological disease.EHV-1strain KyA is attenuated in the mouse and equine, whereaswild-typestrain RacL11 induces severe inflammatory infiltration of the lung, causing infected mice to succumb at 4 to 6 days post-infection. Our previous results showed that EHV-1 KyA immunization protected CBA mice from pathogenic RacL11 challenge at 2 and 4 weeks post-immunization, and that the infection with theattenuatedKyA elicits protective humoral and cell-mediated immune responses.To investigate the protective mechanisms of EHV-1 KyA by innate immune responses, CBA mice immunized with live KyA were challenged with RacL11 at various timespost-vaccination. KyA immunization effectively protected CBA mice from RacL11 challenge at 1 to 7 dayspost-immunization. Immunized mice lost less than 10% of their preinfection body weight and rapidly regained body weight. Lung virus titers in EHV-1 KyA-immunized CBA mice were 1,000-fold lower at 2 days post-RacL11 challenge than lungs of non-immunized mice, which was indicative of accelerated virus clearance. Affymetrix microarray analysis revealed thatIFN-and16 antiviral interferon-stimulated genes (ISGs) were upregulated 3.1- to 48.2-fold at 8 h post-challengein the lungs of RacL11-challenged mice that had been immunized with KyA. Murine IFN-inhibitedEHV-1 infection of murine alveolar macrophage MH-S cells andeffectively protected mice against lethal EHV-1 challenge, suggesting that IFN-expression may be important in mediating protection elicited by KyA immunization. These results suggestthat EHV-1 KyA can be used asa live attenuated EHV-1 vaccine as well as a prophylactic agent in horses.
Immunization with Attenuated Equine Herpesvirus 1 Strain KyA Induces Innate Immune Responses That Protect Mice from Lethal Challenge.
Sex, Specimen part
View SamplesAcquired imatinib resistance in chronic myelogenous leukemia (CML) can be the consequence of mutations in the kinase domain of BCR-ABL or increased protein levels. However, as in other malignancies, acquired resistance to cytostatic drugs is a common reason for treatment failure or disease progression. As a model for drug resistance, we developed a CML cell line resistant to cyclophosphamide (CP). Using oligonucleotide arrays, we examined changes in global gene expression. Selected genes were also examined by real-time PCR and flow cytometry. Neither the parent nor the resistant lines had mutations in their ATP binding domain. Filtering genes with a low-base line expression, a total of 239 genes showed significant changes (162 up- and 77 down-regulated) in the resistant clone. Most of the up-regulated genes were associated with metabolism, signal transduction, or encoded enzymes. The gene for aldehyde dehydrogenase 1 was over-expressed more than 2000 fold in the resistant clone. BCR-ABL was expressed in both cell lines to a comparable extent. When exposed to the tyrosine kinase inhibitors imatinib and nilotinib, both lines were sensitive. In conclusion, we found multiple genetic changes in a CML cell line resistant to CP related to metabolism, signal transduction or apoptosis. Despite these changes, the resistant cells retained sensitivity to tyrosine kinase inhibitors.
Comparative gene expression analysis of a chronic myelogenous leukemia cell line resistant to cyclophosphamide using oligonucleotide arrays and response to tyrosine kinase inhibitors.
No sample metadata fields
View SamplesThe lung is the entry site for Bacillus anthracis in inhalation anthrax, the most deadly form of the disease. Spores must escape through the alveolar epithelial cell (AEC) barrier and migrate to regional lymph nodes, germinate and enter the circulatory system to cause disease. Several mechanisms to explain alveolar escape have been postulated, and all these tacitly involve the AEC barrier. In this study, we incorporate our primary human type I AEC model, microarray gene profiling and gene enrichment analysis to study the response of AEC to B. anthracis, (Sterne) spores at 4 and 24 hours post-exposure. Spore exposure altered gene expression in AEC after 4 and 24 hours and differentially expressed genes (1.3 fold, p 0.05) included CCL4/MIP-1 (4 hours), CXCL8/IL-8 (4 and 24 hours) and CXCL5/ENA-78 (24 hours). Gene enrichment analysis revealed that pathways involving cytokine or chemokine activity, receptor binding, and innate immune responses to infection were prominent. Microarray results were confirmed by qRT-PCR and multiplex ELISA assays. Chemotaxis assays demonstrated that spores induced the release of biologically active neutrophil and monocyte chemokines, and that CXCL8/IL-8 was the major neutrophil chemokine. The small or sub-chemotactic doses of CXCL5/ENA-78, CXCL3/GRO and CCL20/MIP-3 may contribute to chemotaxis by priming effects. These data provide the first whole transcriptomic description of the human type I AEC initial response to B. anthracis spore exposure, and contribute to an increased understanding of the role of AEC in the pathogenesis of inhalational anthrax.
No associated publication
Sex, Specimen part, Race, Subject
View SamplesTreatment of cells with DNA damaging agents leads to large-scale gene expression changes. Proper transcriptional regulation is important for cells to arrest, repair damage and adjust cellular processes such as metabolism in order to survive the damaging assault. Damage-induced transcription is a highly regulated response. This study establishes a novel role for two factors, Snf1 and Rad23, in regulation of the UV-induced transcriptional response.
No associated publication
No sample metadata fields
View Samples