Cellular dormancy and heterogeneous cell cycle lengths provide important explanations for treatment failure following adjuvant therapy with S-phase cytotoxics in colorectal cancer (CRC) yet the molecular control of the dormant versus cycling state remains unknown. In CRCs dormant cells are found to be highly clonogenic and resistant to chemotherapies. We sought to understand the molecular features of dormant CRC cells to facilitate rationale identification of compounds to target both dormant and cycling tumour cells. Overall design: Six colorectal cancer cell lines (DLD1, HCT15, HT55, SW948, RKO and SW48) were labelled with the cell permeable dye CFSE and then grown in non-adherent spheroid culture for 6 days to enable identification of dormant cells that retain CFSE (LRC) and cycling cells (BULK). LRCs and BULK populations were then FACS sorted from each cell line in quadruplicate. As a control experiment, to identify off-target effects of the CFSE dye and culture artefacts, BULK populations from DLD1 cells at d1 and d6 after seeding both with and without CFSE labelling were included in the RNAseq analysis. RNA was extracted using the RNAeasy Micro Plus kit (Qiagen) and quantified using the Qubit RNA Assay Kit (Thermo Fisher Scientific). RNA quality was assessed using the Agilent Bioanalyser system as per manufacturer's instructions. Following normalisation and sample randomisation, Truseq library (Illumina) preparation was carried out at the CRUK CI genomics facility and subsequent single end, 50bp sequencing using the HiSeq system (Illumina). Following human genome alignment (hg19), read counts were normalised and differential expression tested using the DEseq protocol.
Itraconazole targets cell cycle heterogeneity in colorectal cancer.
Specimen part, Cell line, Subject
View SamplesTwo cell lines (HT55 and SW948) were found responsive to itraconazole treatment. To identify the mode of action cells were treated with itraconazole or control (DMSO) and then subjected to RNAseq analysis once the phenotype had developed Overall design: HT55 and SW948 cells were seeded in adherent culture and treated with 5uM itraconazole or DMSO for 6 days. Cells then underwent RNA extraction using the RNAeasy Micro Plus kit (Qiagen) and quantified using the Qubit RNA Assay Kit (Thermo Fisher Scientific). RNA quality was assessed using the Agilent Bioanalyser system as per manufacturer's instructions. Following normalisation and sample randomisation, Truseq library (Illumina) preparation was carried out at the CRUK CI genomics facility and subsequent single end, 50bp sequencing using the HiSeq system (Illumina). Following human genome alignment (hg19), read counts were normalised and differential expression tested using the DEseq protocol.
Itraconazole targets cell cycle heterogeneity in colorectal cancer.
Specimen part, Cell line, Treatment, Subject
View SamplesGranulocyte-colony stimulating factor (G-CSF) is used to boost granulocyte counts in immunocompromised patients, but its effects on the immune system may be counter productive. We tested the hypothesis that G-CSF mobilized peripheral blood stem cell (PBSC) products are immunologically down regulated based on gene microarray analysis.
Hematopoietic stem cell mobilization with G-CSF induces innate inflammation yet suppresses adaptive immune gene expression as revealed by microarray analysis.
No sample metadata fields
View SamplesAllogeneic hematopoietic stem cell transplantation (HSCT) is the treatment of choice for high-risk hematological malignancies, yet a major complication associated with this therapy is acute graft-versus-host disease (GVHD). Despite a well-defined pathophysiological mechanism, there are no definitive markers for predicting acute GVHD development or progression to advanced stages. In the current study, we enrolled four acute GVHD and four acute GVHD-free recipients of allogeneic HSCT and collected peripheral blood just prior to onset of clinical acute GVHD for analysis on Affymetrix GeneChip Human Genome U133 Plus 2.0 microarrays. We noted significant differences in expression of 1,658 genes between control and acute GVHD patients, based on an analysis of covariance (ANCOVA) by type of transplant, a pooled error estimate, and a false discovery rate (FDR) of 10%. In conclusion, we offer the first report of a preliminary molecular signature of acute GVHD in allogeneic HSCT patients.
A preliminary gene expression profile of acute graft-versus-host disease.
No sample metadata fields
View SamplesIn this study, we examined C57BL/6J and AJ mice who received either sham surgery or cholestatic intestinal injury.
CANDIDATE GENES FOR LIMITING CHOLESTATIC INTESTINAL INJURY IDENTIFIED BY GENE EXPRESSION PROFILING.
Sex, Age, Specimen part, Treatment
View SamplesAnalysis of GPR120 which play roles for the fatty acid sensor in adipose tissue. Results provide insight into the transcriptional effects caused by the loss of the GPR120 proteins and provide further insight into their functions.
Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human.
Specimen part, Treatment, Subject
View SamplesExpression profiling of two-weeks-old wild type, nar1-4/- and nbp35-3/- mutant seedlings. The cytosolic Fe -S cluster assembly pathway is involved in cytosolic and nucleus Fe-S protein maturation.
The role of Arabidopsis thaliana NAR1, a cytosolic iron-sulfur cluster assembly component, in gametophytic gene expression and oxidative stress responses in vegetative tissue.
Age, Specimen part
View SamplesBackground & Aims: Perturbations in pancreatic ductal bicarbonate secretion often result in chronic pancreatitis. Although the physiological mechanism of ductal secretion is known, its transcriptional control is not well characterized. Here, we investigate the role of the transcription factor Hematopoietically-expressed homeobox protein (Hhex) in pancreatic secretion and pancreatitis. Methods: We derived mice with pancreas-specific, Cre-mediated Hhex gene ablation to determine the requirement of Hhex in the pancreatic duct in early life and in adult stages. Histological and immunostaining analyses were used to detect the presence of pathology. Pancreatic primary ductal cells (PDCs) were isolated to discover differentially expressed transcripts upon acute Hhex ablation. Results: Hhex protein was detected throughout the embryonic and adult ductal trees. Ablation of Hhex in pancreatic progenitors resulted in postnatal ductal ectasia associated with acinar-to-ductal metaplasia, a progressive phenotype that ultimately resulted in chronic pancreatitis. Hhex ablation in adult mice, however, did not cause any detectable pathology. Ductal ectasia did not result from perturbations in primary cilia, but was consistent with the effects of primary ductal hypertension. RNA-seq analysis of Hhex-ablated PDCs indicated the G-protein coupled receptor Natriuretic peptide receptor 3, implicated in paracrine signaling, was upregulated 4.70-fold. Conclusions: Although Hhex is dispensable for adult pancreatic function, ablation of Hhex in pancreatic progenitors results in profound pancreatitis that is consistent with primary ductal hypertension. Our data highlight the critical role of paracrine signaling in maintaining ductal homeostasis, especially in early life, and support ductal hypersecretion as a novel etiology of pediatric chronic pancreatitis. Overall design: Pancreatic primary ductal cells (PDCs) were isolated from uninduced adult HhexL/L;Sox9CreERT2 (n=2) and littermate control HhexL/L (n=2) mice. PDCs were treated with 500nM 4-hydroxytamoxifen in vitro for 4 days, and then RNA was collected for transcriptome analysis.
Spontaneous Pancreatitis Caused by Tissue-Specific Gene Ablation of <i>Hhex</i> in Mice.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
VEGF blockade enhances the antitumor effect of BRAFV600E inhibition.
Cell line, Treatment
View SamplesIn this work we investigated the combined effects of the BRAF inhibition and of the VEGF blockade in a preclinical model of melanoma. The purpose of this dataset was to examine the transcriptional responses of a A375 xenograft model to PLX472 and bevacizumab, either as single agents or as combination therapy. We performed species-specific analysis of gene expression to discriminate the effects of the different therapeutic regimens on tumor cells (human) and stromal microenvironment (mouse). Here, Illumina Mouse BeadChips were used to profile the transcriptome after 12 days treatment. We reported that dispensing the dual treatment is more efficient than the single compounds and the occurrence of resistance by modifying the tumor genetic programs regulating myeloid cells recruitment and extracellular matrix remodeling.
VEGF blockade enhances the antitumor effect of BRAFV600E inhibition.
Cell line, Treatment
View Samples