We discovered a rare missense mutation in NR1H4 (R436H), which encodes the farnesoid X receptor (FXR), associating with lower levels of total cholesterol in the Icelandic population. To explore the effects of R436H we used CRISPR-Cas9 to generate homozygous NR1H4 R436H and NR1H4 knockout human iPSC lines which we differentiated to hepatocytes. Hepatocytes were treated with an FXR agonist for 24 hours and transcript abundance measured by RNA-seq. The global response to FXR activation in NR1H4 R436H cells was very similar to that of wild-type cells showing that it is not a loss-of-function mutation. However, we did observe subtle gene expression differences compatible with an effect on lipids when we compared R436H agonist treated hepatocytes to wild-type agonist treated hepatocytes. Overall design: RNA-seq was performed on wild-type, NR1H4 knockout and NR1H4 R436H iPSC-derived hepatocytes treated with FXR agonist GW4064.
Predicted loss and gain of function mutations in ACO1 are associated with erythropoiesis.
Specimen part, Treatment, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide DNA methylation analysis of articular chondrocytes reveals a cluster of osteoarthritic patients.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesThe aim of this study is to identify, for the first time, the genome-wide DNA methylation profiles of human articular chondrocytes from OA and healtly cartilage samples.
Genome-wide DNA methylation analysis of articular chondrocytes reveals a cluster of osteoarthritic patients.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesPrevious results from a genome scan in a F2 Iberian by Meishan intercross showed several chromosome regions associated with litter size traits. In order to identify candidate genes underlying these QTL we have performed an ovary gene expression analysis during pregnancy. F2 sows were ranked by their estimated breeding values for prolificacy, the six sows with higher EBV (HIGH prolificacy) and the six with lower EBV (LOW prolificacy) were selected. Samples were hybridized to Affymetrix porcine expression microarrays. The statistical analysis with a mixed-model approach identified 221 differentially expressed probes, representing 189 genes. These genes were functionally annotated in order to identify the genetic pathways overrepresented. Among the most represented functional groups the first one was immune system response activation against external stimulus. The second group was made up of genes which regulate the maternal homeostasis by complement and coagulation cascades. The last group was involved on lipid and fatty acid enzymes of metabolic processes, which participate in steroidogenesis pathway. In order to identify powerful candidate genes for prolificacy, the second approach of this study was merging microarray data with position information of QTL affecting litter size, previously detected in the same experimental cross. According to this, we have identified 27 differentially expressed genes co-localized with QTL for litter size traits, which fulfill the biological, positional and functional criteria.
Differential gene expression in ovaries of pregnant pigs with high and low prolificacy levels and identification of candidate genes for litter size.
Specimen part
View SamplesHuman induced pluripotent stem (hiPS) cells and human embryonic stem (hES) cells differentiate into cells of the endothelial lineage, but derivation of cells with human umbilical cord blood endothelial colony forming cell (ECFC)-like properties has not been reported. Here we describe a novel serum- and stromal cell-free ECFC differentiation protocol for the derivation of clinically relevant numbers of ECFCs (> 108) from hiPS and hES cells. We identified NRP-1+CD31+ selected cells that displayed a stable endothelial phenotype exhibiting high clonal proliferative potential, extensive replicative capacity, formation of human vessels that inosculated with host vasculature upon transplantation, but lacking in teratoma formation in vivo. We also identified NRP-1-VEGF165-KDR-mediated activation of KDR as a critical mechanism for the emergence and derivation of ECFCs from hiPS and hES cells. This protocol advances the field by generating highly replicative but stable endothelial cells for use as a potential cell therapy for human clinical disorders. Overall design: Transcriptome sequencing of undifferentiated day 0 hiPS cells, Day 3 differentiated hiPS-derived mesoderm proginator cells, Day 12 hiPS-derived NRP-1+CD31+ cells, Day 12 H9-hES-derived NRP-1+CD31+ cells and cord blood-derived Endothelial colony forming cells.
Differentiation of human pluripotent stem cells to cells similar to cord-blood endothelial colony-forming cells.
Specimen part, Subject
View SamplesArtificial selection has resulted in animal breeds with extreme phenotypes. As an organism is made up of many different tissues and organs, each with its own genetic programme, it is pertinent to ask what are the relative contributions of breed or sex when assessed across tissues.
Transcriptome architecture across tissues in the pig.
Age
View SamplesHuman myelopoiesis is an exciting biological model for cellular differentiation since it represents a plastic process where pluripotent stem cells gradually limit their differentiation potential, generating different precursor cells which finally evolve into distinct terminally differentiated cells. This study aimed at investigating the genomic expression during myeloid differentiation through a computational approach that integrates gene expression profiles with functional information and genome organization. The genomic distribution of myelopoiesis genes was investigated integrating transcriptional and functional characteristics of genes. The analysis of genomic expression during human myelopoiesis using an integrative computational approach allowed discovering important relationships between genomic position, biological function and expression patterns and highlighting chromatin domains, including genes with coordinated expression and lineage-specific functions.
Motif discovery in promoters of genes co-localized and co-expressed during myeloid cells differentiation.
No sample metadata fields
View SamplesHuman myelopoiesis is an exciting biological model for cellular differentiation since it represents a plastic process where pluripotent stem cells gradually limit their differentiation potential, generating different precursor cells which finally evolve into distinct terminally differentiated cells. This study aimed at investigating the genomic expression during myeloid differentiation through a computational approach that integrates gene expression profiles with functional information and genome organization. The genomic distribution of myelopoiesis genes was investigated integrating transcriptional and functional characteristics of genes. The analysis of genomic expression during human myelopoiesis using an integrative computational approach allowed discovering important relationships between genomic position, biological function and expression patterns and highlighting chromatin domains, including genes with coordinated expression and lineage-specific functions.
Motif discovery in promoters of genes co-localized and co-expressed during myeloid cells differentiation.
No sample metadata fields
View SamplesThe aim of this study was to identify differences in the NK-cell response towards Leishmania mexicana lipophosphoglycan (LPG) between patients with localized (LCL) and diffuse (DCL) cutaneous leishmaniasis through gene expression profiling, in an attempt to pinpoint alterations in the signaling pathways responsible for the NK-cell dysfunction in patients with DCL.
Down-Regulation of TLR and JAK/STAT Pathway Genes Is Associated with Diffuse Cutaneous Leishmaniasis: A Gene Expression Analysis in NK Cells from Patients Infected with Leishmania mexicana.
Specimen part, Disease, Disease stage, Treatment
View SamplesSeveral reports indicate that mesalazine (5-aminosalicylic acid or 5-ASA) is a promising candidate for the chemoprevention of Colo-Rectal Cancer (CRC) due to its ability to reach the purpose, yet avoiding at the same time the side effects that are usually determined by prolonged administrations of Non Steroidal Anti-Inflammatory Drugs. This activity of 5-ASA is probably the consequence of a number of effects determined on colon cancer cells and consisting of reduced proliferation, increased apoptosis and activation of cell cycle checkpoints. A recent observation has suggested that these effects could be mediated by the capacity of 5-ASA to interfere with the nuclear translocation of beta-catenin, in turn responsible for the inhibition of its transcription activity. The aim of our study was to better characterize the molecular mechanism by which 5-ASA inhibits the beta-catenin signaling pathway. To address this issue we assessed, by means of the Affymetrix microarray methodology, the transcriptome changes determined on Caco2 cells by a 96 h treatment with 20 mM mesalazine.
Mesalazine inhibits the beta-catenin signalling pathway acting through the upregulation of mu-protocadherin gene in colo-rectal cancer cells.
No sample metadata fields
View Samples