Lamins are components of the peripheral nuclear lamina and interact with heterochromatic genomic regions, termed lamina-associated domains (LADs). In contrast to lamin B1, lamin A/C also localizes throughout the nucleus, where it associates with the chromatin-binding protein lamina-associated polypeptide (LAP) 2alpha. Here we show lamin A/C also interacts with euchromatin, as determined by chromatin immunoprecipitation analyses of eu- and heterochromatin-enriched samples. By way of contrast, lamin B1 was only found associated with heterochromatin. Euchromatic regions occupied by lamin A/C overlap with those bound by LAP2alpha, the depletion of which shifts binding of lamin A/C towards more heterochromatic regions. These alterations in lamin A/C chromatin interaction affect epigenetic histone marks in euchromatin without significantly affecting gene expression, while loss of lamin A/C in heterochromatic regions increased gene expression. Our data show a novel role of nucleoplasmic lamin A/C and LAP2alpha in regulating euchromatin. Overall design: Examination of LaminA, LaminB and Lap2a DNA binding in Lap2alpha +/+ and Lap2a -/- cells and according changes in Histone modifications and gene expression
A-type lamins bind both hetero- and euchromatin, the latter being regulated by lamina-associated polypeptide 2 alpha.
No sample metadata fields
View SamplesBipolar disorder (BPD) is a debilitating heritable psychiatric disorder. Contemporary models for the manic pole of BPD have primarily utilized either single locus transgenics or treatment with psychostimulants. Our lab recently characterized a mouse strain, termed Madison (MSN), which naturally displays a manic phenotype, exhibiting elevated locomotor activity, increased sexual behavior, and higher forced swimming relative to control strains. Lithium chloride and olanzapine treatments attenuate this phenotype. In this study, we replicated our locomotor activity experiment, showing that MSN mice display generationally-stable mania relative to their outbred ancestral strain, hsd:ICR (ICR). We then performed a gene expression microarray experiment to compare hippocampus of MSN and ICR mice. We found dysregulation of multiple transcripts whose human orthologs are associated with BPD and other psychiatric disorders including schizophrenia and ADHD, including: Epor, Smarca4, Cmklr1, Cat, Tac1, Npsr1, Fhit, and P2rx7. RT-qPCR confirmed dysregulation for all of seven transcripts tested. Using a network analysis, we found dysregulation of a gene system related to chromatin packaging, a result convergent with recent human findings on BPD. Using a novel genomic enrichment algorithm, we found enrichment in genome regions homologous to human loci implicated in BPD in replicated linkage studies including homologs of human cytobands 1p36, 3p14, 3q29, 6p21-22, 12q24, 16q24, and 17q25. Our findings suggest that MSN mice represent a polygenic model for the manic pole of BPD showing much of the genetic systems complexity of the corresponding human disorder. Further, the high degree of convergence between our findings and the human literature on BPD brings up novel questions about evolution by analogy in mammalian genomes.
A new mouse model for mania shares genetic correlates with human bipolar disorder.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcriptional signatures as a disease-specific and predictive inflammatory biomarker for type 1 diabetes.
No sample metadata fields
View SamplesThe complex milieu of inflammatory mediators associated with many diseases is often too dilute to directly measure in the periphery, necessitating development of more sensitive measurements suitable for mechanistic studies, earlier diagnosis, guiding selection of therapy, and monitoring interventions. Previously, we determined that plasma of recent-onset (RO) Type 1 diabetes (T1D) patients induce a proinflammatory transcriptional signature in fresh peripheral blood mononuclear cells (PBMC) relative to that of unrelated healthy controls (HC). Here, using an optimized cryopreserved PBMC-based protocol, we analyzed larger RO T1D and HC cohorts. In addition, we examined T1D progression by looking at longitudinal, pre-onset and longstanding T1D samples.
Transcriptional signatures as a disease-specific and predictive inflammatory biomarker for type 1 diabetes.
No sample metadata fields
View SamplesThe complex milieu of inflammatory mediators associated with many diseases is often too dilute to directly measure in the periphery, necessitating development of more sensitive measurements suitable for mechanistic studies, earlier diagnosis, guiding selection of therapy, and monitoring interventions. Previously, we determined that plasma of recent-onset (RO) Type 1 diabetes (T1D) patients induce a proinflammatory transcriptional signature in fresh peripheral blood mononuclear cells (PBMC) relative to that of unrelated healthy controls (HC). Here, using an optimized cryopreserved PBMC-based protocol, we compared the signature found between unrelated healthy controls and non-diabetic cystic fibrosis patients possessing Pseudomonas aeruginosa pulmonary tract infection.
Transcriptional signatures as a disease-specific and predictive inflammatory biomarker for type 1 diabetes.
No sample metadata fields
View SamplesThe complex milieu of inflammatory mediators associated with many diseases is often too dilute to directly measure in the periphery, necessitating development of more sensitive measurements suitable for mechanistic studies, earlier diagnosis, guiding selection of therapy, and monitoring interventions. Previously, we determined that plasma of recent-onset (RO) Type 1 diabetes (T1D) patients induce a proinflammatory transcriptional signature in fresh peripheral blood mononuclear cells (PBMC) relative to that of unrelated healthy controls (HC). Here, using an optimized cryopreserved PBMC-based protocol, we compared the signature found between unrelated healthy controls and patients with bacterial pneumonia.
Transcriptional signatures as a disease-specific and predictive inflammatory biomarker for type 1 diabetes.
No sample metadata fields
View SamplesThe complex milieu of inflammatory mediators associated with many diseases is often too dilute to directly measure in the periphery, necessitating development of more sensitive measurements suitable for mechanistic studies, earlier diagnosis, guiding selection of therapy, and monitoring interventions. Previously we determined that plasma of recent-onset (RO) Type 1 diabetes (T1D) patients induce a proinflammatory transcriptional signature in fresh peripheral blood mononuclear cells (PBMC) relative to that of unrelated healthy controls (HC). Here, using an optimized cryopreserved PBMC-based protocol, we compared the signature found in pre H1N1 samples to the signature associated with active H1N1 flu.
Transcriptional signatures as a disease-specific and predictive inflammatory biomarker for type 1 diabetes.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Mechanisms of epigenetic and cell-type specific regulation of Hey target genes in ES cells and cardiomyocytes.
Specimen part
View SamplesWe used an in vitro cardiomyocyte differentiation system with inducible Hey1 or Hey2 expression to study target gene regulation in cardiomyocytes (CM) generated from murine embryonic stem cells (ESC). The effects of Hey1 and Hey2 are largely redundant, but cell type specific. The number of regulated genes is comparable between ESC and CM, but the total number of binding sites is much higher, especially in ESC, targeting mainly genes involved in transcriptional regulation and developmental processes. Repression by Hey generally correlates with the extent of Hey-binding to target promoters, subsequent Hdac recruitment and lower histone acetylation. Functionally, treatment with the Hdac inhibitor TSA abolished Hey target gene regulation. However, in CM the repressive effect of Hey-binding is lost for a subset of genes. These lack Hey-dependent histone deacetylation in CM and are enriched for binding sites of cardiac specific activators like Srf, Nkx2-5, and Gata4.
Mechanisms of epigenetic and cell-type specific regulation of Hey target genes in ES cells and cardiomyocytes.
No sample metadata fields
View SamplesWe used an in vitro cardiomyocyte differentiation system with inducible Hey1 or Hey2 expression to study target gene regulation in cardiomyocytes (CM) generated from murine embryonic stem cells (ESC). The effects of Hey1 and Hey2 are largely redundant, but cell type specific. The number of regulated genes is comparable between ESC and CM, but the total number of binding sites is much higher, especially in ESC, targeting mainly genes involved in transcriptional regulation and developmental processes. Repression by Hey generally correlates with the extent of Hey-binding to target promoters, subsequent Hdac recruitment and lower histone acetylation. Functionally, treatment with the Hdac inhibitor TSA abolished Hey target gene regulation. However, in CM the repressive effect of Hey-binding is lost for a subset of genes. These lack Hey-dependent histone deacetylation in CM and are enriched for binding sites of cardiac specific activators like Srf, Nkx2-5, and Gata4. Overall design: ES cells and cardiomyocytes with Hey1 or Hey2 overexpression were compared to control cells
Mechanisms of epigenetic and cell-type specific regulation of Hey target genes in ES cells and cardiomyocytes.
No sample metadata fields
View Samples