We analysed the transcriptional signature in endothelial cells extracted from the bone marrow of mice engrafted with human AML and compared it to the one of mice engrafted with human normal hematopoietic cells Overall design: Immunodeficient mice were transplanted with human AML cells derived from patients, or with normal human hematopoietic cells derived from cord blood. Mice were sacrificed once assessed the bone marrow engraftment, and the bones were processed to isolate endothelial cells using the CD31 marker. RNA was extracted, sequencing libraries were prepared and sequenced.
Increased Vascular Permeability in the Bone Marrow Microenvironment Contributes to Disease Progression and Drug Response in Acute Myeloid Leukemia.
Specimen part, Disease, Subject
View SamplesWe have applied a new software to analyse a human naive single-chain antibody (scFv) library, comprehensively revealing the diversity of antibody variable complementarity-determining regions (CDRs) and their families.
A novel DNAseq program for enhanced analysis of Illumina GAII data: a case study on antibody complementarity-determining regions.
No sample metadata fields
View SamplesEstrogen-Related Receptor alpha (ERR) is a nuclear receptor that acts principally as a regulator of metabolism processes particularly in tissues subjected to high-energy demand. Besides its implication in energy metabolism and mitochondrial biogenesis, ERR was recently associated with tumorigenesis. Notably, increased expression of ERR was noted in different cancerous tissues as breast, ovary and colon. However, supplemental studies are required to better understand the role of ERR in colon carcinoma.
ERRα metabolic nuclear receptor controls growth of colon cancer cells.
Cell line, Treatment
View SamplesHistone deacetylases (HDACs) catalyze the removal of acetyl groups from acetylated histone tails that consequently interact more closely with DNA, leading to chromatin state refractory to transcription. Zea mays HDA108 belongs to the Rpd3/HDA1 HDAC family and is ubiquitously expressed during development. The newly isolated hda108/hda108 insertional mutant exhibited many developmental defects: significant reduction in plant height, alterations of shoot and leaf development, alterations of inflorescence patterning and fertility. Western blot analyses and immunolocalization experiments revealed an evident increase in histone acetylation, accompanied by a marked reduction in H3K9 dimethylation, in mutant nuclei. The DNA methylation status, in the CHG sequence context, and the transcript level of ribosomal sequences were also affected in hda108 mutants, while enrichment in H3 and H4 acetylation characterizes both repetitive and non-repetitive transcriptional up-regulated loci. RNA-Seq both of young leaf and anthers indicated that transcription factor expression is highly affected and that the pollen developmental programme results as disrupted in hda108 mutants. Crosses between hda108/hda108 and epiregulator mutants did not produce any double mutant progeny indicating possible genetic interactions of HDA108 with distinct epigenetic pathways. Our findings indicate that HDA108 is directly involved in regulation of maize development, fertility and epigenetic regulation of genome activity. Overall design: Total RNA-Seq analysis of maize anthers at post-meiotic (PMeA) and mitotic (MiA) stages. 2 biological replicates for stage, each obtained by pooling anthers from three tassels per genotype were collected from wild-type and hda108 mutant plants. Strand-specific sequencing on a Illumina HiSeq2500
Control of Maize Vegetative and Reproductive Development, Fertility, and rRNAs Silencing by <i>HISTONE DEACETYLASE 108</i>.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide methylation analysis in vestibular schwannomas shows putative mechanisms of gene expression modulation and global hypomethylation at the HOX gene cluster.
Specimen part
View SamplesBackground: Schwannomas and grade I meningiomas are non-metastatic neoplasms that shares the common mutation of gene NF2. They usually appear in Neurofibromatosis type 2 patients. Currently, there is no drug treatment available for both tumors, so the use of wide expression technologies is crucial to find those therapeutic targets.
Global expression profile in low grade meningiomas and schwannomas shows upregulation of PDGFD, CDH1 and SLIT2 compared to their healthy tissue.
Specimen part
View SamplesVestibular schwannomas are intracranial tumors that affects unilateral and sporadically or bilateral when is associated to Neurofibromatosis type 2 syndrome. The hallmark of the disease is the biallelic inactivation by NF2 gene mutation or LOH of chromosome 22q, where this gene harbors. In this work, we used Infinium HumanMethylation 450K BeadChip microarrays in a series of 36 vestibular schwannomas, 4 non-vestibular schwannomas and 5 healthy nerves. Our results shows a trend to hypomethylation in schwannomas. Furthermore, HOX genes, located at 4 clusters in the genome, displayed hypomethylation in numerous CpG sites in vestibular but not in non-vestibular schwannomas. Additionally, several microRNA and protein-coding genes were found hypomethylated at promoter regions and confirmed by expression analysis; including miRNA-199a1, miRNA-21, MET and PMEPA1. We also detected methylation patterns that might be involved in alternative transcripts of several genes such as NRXN1 or MBP; that would increase the complexity of methylation-expression. Overall, our results shows specific epigenetic signatures in several coding genes and microRNA that could be used in the finding of potential therapeutic targets.
Genome-wide methylation analysis in vestibular schwannomas shows putative mechanisms of gene expression modulation and global hypomethylation at the HOX gene cluster.
Specimen part
View SamplesVestibular Schwannomas are benign neoplasms that arise from the vestibular nerve. The hallmark of these tumors is the biallelic inactivation of NF2. Transcriptomic alterations, such as the Nrg1/ErbB2 pathway, have been described in Schwannomas. Here, we have performed a whole transcriptomic analysis in 31 vestibular Schwannomas and 9 control nerves in the Affymetrix Gene 1.0ST platform, validated by quantitative Real-Time PCR using TaqMan Low Density Arrays. We performed a mutational analysis of NF2 by PCR/dHPLC and MLPA as well as a microsatellite marker analysis of the loss of heterozygosity of chromosome 22q. The microarray analysis showed that 1516 genes were deregulated, and 48 of the genes were validated by qRT-PCR. At least two genetic hits (allelic loss and/or gene mutation) in NF2 were found in 16 tumors, seven cases showed one hit and eight tumors showed no NF2 alteration. As conclusion, MET and associated genes such as ITGA4/B6, PLEXNB3/SEMA5 and CAV1 showed a clear deregulation in vestibular Schwannomas. In addition, androgen receptor (AR) downregulation may denote a hormonal effect or cause in this tumor. Furthermore, the osteopontin gene (SPP1), which is involved in Merlin protein degradation, was upregulated, which suggests that this mechanism may also exert a pivotal role in Schwannoma Merlin depletion. Finally, no major differences were found between tumors of different sizes, histological types or NF2 status, which suggests that at the mRNA level all Schwannomas, regardless of molecular and clinical characteristics, may share common features that can be used in the fight against them.
Microarray analysis of gene expression in vestibular schwannomas reveals SPP1/MET signaling pathway and androgen receptor deregulation.
No sample metadata fields
View SamplesPurpose: To identify transcriptional changes by RNA-seq in tumor samples, before bevacizumab combination treatment and after bevacizumab combination treatment in both responding and non-responding recurrent glioblastoma patients Overall design: Three comparison analyses were further performed: 1.) Paired analysis of pre- and post-treated samples from responding patients; 2.) Comparison of pre-treated samples of responders vs. non-responders; 3.) Paired analysis of pre- and post-treated samples from non-responding patients The sample ''characteristics: batch'' represents a combination of the RNA-extraction date and the library-preparation date for each sample.
Transcriptional changes induced by bevacizumab combination therapy in responding and non-responding recurrent glioblastoma patients.
Sex, Disease, Disease stage, Subject, Time
View SamplesThe 8p11 myeloproliferative syndrome (EMS), also referred to as the stem cell leukemia/lymphoma syndrome, is a chronic myeloproliferative disorder that rapidly progresses into an acute leukemia. Molecularly, EMS is characterized by fusion of various partner genes to the FGFR1 gene, resulting in constitutive activation of the tyrosine kinase activity within FGFR1. The two most common fusion genes in human EMS are ZMYM2/FGFR1 (previously known as ZNF198/FGFR1) and BCR/FGFR1. To study the transcriptional programs becoming deregulated by the FGFR1 fusion genes, global gene expression analysis on human CD34+ cord blood cells expressing either of the fusion oncogenes ZMYM2/FGFR1 and BCR/FGFR1 was performed. As a reference gene we also included the more studied BCR/ABL1 fusion oncogene associated with chronic myeloid leukemia. We found that the 3 different fusion oncogenes had in common the upregulation of several genes involved in the JAK/STAT signalling pathway and also other sets of genes. However, the gene expression profiles were not identical, suggesting that both the tyrosine kinase containing gene and the partner gene would affect the transcription of downstream target genes.
Modeling the human 8p11-myeloproliferative syndrome in immunodeficient mice.
No sample metadata fields
View Samples