N6-methyladenosine (m6A) is the most abundant internal modification of eukaryotic mRNA. This modification has previously been shown to alter the export kinetics for mRNAs though the molecular details surrounding this phenomenon remain poorly understood. Here we show that the m6A complex (WTAP, KIAA1429, METTL3/14) drives recruitment of the TREX mRNA export complex onto m6A modified mRNAs and this process is essential for the efficient export of certain mRNAs. Depletion of the core m6A complex leads to loss of TREX from mRNAs which undergo the m6A modification. We show that TREX stimulates recruitment of the m6A reader protein YTHDC1 to the mRNP and the m6A complex influences the interaction of TREX with YTHDC1. We suggest that m6A acts as a surrogate for other TREX recruitment mechanisms such as splicing and 5' capping, in long internal and final exons which may otherwise be devoid of this essential complex for mRNA export. Overall design: mRNA profiles of control and Virilizer/WTAP RNAi samples in cytoplasmic and nuclear cell fractions generated by mRNA-seq in triplicate using HiSeq 2500
The m<sup>6</sup>A-methylase complex recruits TREX and regulates mRNA export.
Cell line, Subject
View SamplesThe transcriptional profile of A673 parental and SP-2509 Drug resistant cells treated with DMSO and SP-2509 (2uM 48hrs) Overall design: A673 parental and SP-2509 Drug resistant cells treated with DMSO and SP-2509 (2uM 48hrs)
Ewing sarcoma resistance to SP-2509 is not mediated through KDM1A/LSD1 mutation.
Treatment, Subject
View SamplesThe transcriptional profile of A673 parental, and SP-2509 drug resistant washout cells (4 and 6 months) Overall design: Following generation of A673 SP-2509 drug resistant cells (chronic exposure for 7 months), drug was withdrawn with cell pellets collected 4 and 6 months after removal.
Ewing sarcoma resistance to SP-2509 is not mediated through KDM1A/LSD1 mutation.
Disease, Treatment, Subject
View SamplesNumerous microRNAs and their target mRNAs are co-expressed across diverse cell types. However, it is unknown whether they are regulated in a cellular context-independent or -dependent manner. Here, we explored transcriptome-wide targeting and gene regulation by miR-155, whose activation-induced expression plays important roles in innate and adaptive immunity. Through mapping of miR-155 targets using differential Argonaute iCLIP, mRNA quantification with RNA-Seq, and 3'UTR usage analysis using polyadenylation (polyA)-Seq in activated miR-155-sufficient and deficient macrophages, dendritic cells, T and B lymphocytes, we identified numerous targets differentially bound by miR-155. While alternative cleavage and polyadenylation (ApA) contributed to differential miR-155 binding to some transcripts, in a majority of cases identical 3'UTR isoforms were differentially regulated across cell types, suggesting ApA-independent and cellular context-dependent miR-155-mediated gene regulation reminiscent of sequence-specific transcription factors. Our study provides comprehensive maps of miR-155 regulatory RNA networks and offers a valuable resource for dissecting context-dependent and -independent miRNA-mediated gene regulation in key cell types of the adaptive and innate immune systems. Overall design: Primary dendritic cells, B cells, CD4 T cells, and macrophages from C57BL/6J wild type and miR-155 KO mice were cultured in RPMI medium with 10% FBS. Prior to harvesting primary dendritic cells, mice were subcutaneously injected with one million B16 melanoma cells expressing Flt3 ligand for about two weeks. After purification of splenic CD11c+ dendritic cells by CD11c microbeads (Miltenyi Biotec), dendritic cells were activated in a medium containing 100 ng/ml LPS (SIGMA) and 20 ng/ml GMSCF (Tonbo). Splenic primary B cells were purified by negative selection using Dynabeads Mouse CD43 (Invitrogen), and activated in a medium containing 25 ug/ml LPS and 6.5 ng/ml mIL4 (PeproTech). CD4 T cells from lymph node and spleen were purified with Dynabeads FlowComp Kit (Invitrogen). CD4+CD25-CD44- T cells were then activated with Dynabeads Mouse T-Activator CD3/CD28 (Invitrogen). Intraperitoneal macrophages, induced by thioglycollate injection, were harvested and activated with 100 ng/ml LPS.
The effect of cellular context on miR-155-mediated gene regulation in four major immune cell types.
Specimen part, Cell line, Treatment, Subject
View SamplesNumerous microRNAs and their target mRNAs are co-expressed across diverse cell types. However, it is unknown whether they are regulated in a cellular context-independent or -dependent manner. Here, we explored transcriptome-wide targeting and gene regulation by miR-155, whose activation-induced expression plays important roles in innate and adaptive immunity. Through mapping of miR-155 targets using differential Argonaute iCLIP, mRNA quantification with RNA-Seq, and 3'UTR usage analysis using polyadenylation (polyA)-Seq in activated miR-155-sufficient and deficient macrophages, dendritic cells, T and B lymphocytes, we identified numerous targets differentially bound by miR-155. While alternative cleavage and polyadenylation (ApA) contributed to differential miR-155 binding to some transcripts, in a majority of cases identical 3'UTR isoforms were differentially regulated across cell types, suggesting ApA-independent and cellular context-dependent miR-155-mediated gene regulation reminiscent of sequence-specific transcription factors. Our study provides comprehensive maps of miR-155 regulatory RNA networks and offers a valuable resource for dissecting context-dependent and -independent miRNA-mediated gene regulation in key cell types of the adaptive and innate immune systems. Overall design: Primary dendritic cells, B cells, CD4 T cells, and macrophages from C57BL/6J wild type and miR-155 KO mice were cultured in RPMI medium with 10% FBS. Prior to harvesting primary dendritic cells, mice were subcutaneously injected with one million B16 melanoma cells expressing Flt3 ligand for about two weeks. After purification of splenic CD11c+ dendritic cells by CD11c microbeads (Miltenyi Biotec), dendritic cells were activated in a medium containing 100 ng/ml LPS (SIGMA) and 20 ng/ml GMSCF (Tonbo). Splenic primary B cells were purified by negative selection using Dynabeads Mouse CD43 (Invitrogen), and activated in a medium containing 25 ug/ml LPS and 6.5 ng/ml mIL4 (PeproTech). CD4 T cells from lymph node and spleen were purified with Dynabeads FlowComp Kit (Invitrogen). CD4+CD25-CD44- T cells were then activated with Dynabeads Mouse T-Activator CD3/CD28 (Invitrogen). Intraperitoneal macrophages, induced by thioglycollate injection, were harvested and activated with 100 ng/ml LPS. Each condition has 3 sequencing replicates.
The effect of cellular context on miR-155-mediated gene regulation in four major immune cell types.
Specimen part, Cell line, Subject
View SamplesLeft ventricular gene expression profiles from 12-, 16- and 20-months old spontaneously hypertensive rats (SHRs) were compared with left ventricular profiles seen in age-matched Wistar-Kyoto (WKY) rats by screening Affymetrix U34A arrays (there are 4 samples in each timepoint except 3 samples of 20-months old WKYs).
Distinct upregulation of extracellular matrix genes in transition from hypertrophy to hypertensive heart failure.
No sample metadata fields
View SamplesWe undertook an integrative technological approach to compare miRNA detection capability of three high-throughput commercial platforms. Overall design: We artificially introduced human precursor, 2’-O-methyl modified and mature spiked-in miRNAs in a controlled fashion into native human placenta total RNA.
Differences in microRNA detection levels are technology and sequence dependent.
Subject
View SamplesFlaviviruses, particularly Japanese encephalitis virus (JEV) and West Nile virus (WNV), are important causes of virus-induced central nervous system (CNS) disease in humans. We used microarray analysis to identify cellular genes that are differentially regulated following infection of the brain with JEV (P3) or WNV (New York 99). Gene expression data for these flaviviruses was compared to that induced following infection of the brain with reovirus (Type 3 Dearing), an unrelated neurotropic virus. Although several studies have described gene expression changes following virus infection of the brain, this report is the first to directly compare large-scale gene expression data from different viruses. We found that a large number of genes were up-regulated in common to infections with all 3 viruses (fold change > 2, P < 0.001), including genes associated with interferon signaling, the immune system, inflammation and cell death/survival signaling. In addition, genes associated with glutamate signaling were down-regulated in common to infections with all 3 viruses (fold change > 2, P < 0.001). These genes may serve broad spectrum therapeutic targets for virus-induced CNS disease. A distinct set of genes were up-regulated following flavivirus-infection, but not following infection with reovirus. These genes were associated with tRNA charging and may serve as therapeutic targets for flavivirus-induce CNS disease.
Virus-induced transcriptional changes in the brain include the differential expression of genes associated with interferon, apoptosis, interleukin 17 receptor A, and glutamate signaling as well as flavivirus-specific upregulation of tRNA synthetases.
Specimen part, Treatment
View SamplesWe examined the effects of TNFa and Spt5, the major DSIF subunit, on nascent and mature transcripts using RNA-Seq of chromatin-associated and cytoplasmic transcripts. Overall design: RNA was extracted from the cytosolic and chromatin fractions of control and Spt5 KD cells that were treated with TNFa for 1 hour
Analysis of Subcellular RNA Fractions Revealed a Transcription-Independent Effect of Tumor Necrosis Factor Alpha on Splicing, Mediated by Spt5.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Epigenome-wide and transcriptome-wide analyses reveal gestational diabetes is associated with alterations in the human leukocyte antigen complex.
Specimen part
View Samples