Pineal function follows a 24-hour schedule, dedicated to the conversion of night and day into a hormonal signal, melatonin. In mammals, 24-hour changes in pineal activity are controlled by a neural pathway that includes the central circadian oscillator in the suprachiasmatic nucleus and the superior cervical ganglia (SCG), which innervate the pineal gland. In this study, we have generated the first next-generation RNA sequencing evidence of neural control of the daily changes in the pineal transcriptome. We found over 3000 pineal transcripts that are differentially expressed (p <0.001) on a night/day basis (70% of these genes increase at night, 376 with fold change >4 or <1/4), the majority of which had not been previously identified as such. Nearly all night/day differences were eliminated by neonatal removal or decentralization of the SCG, confirming the importance of neural input for differential night/day changes in transcript abundance. In contrast, very few non-rhythmic genes showed evidence of changes in expression due to the surgical procedure itself, which is consistent with the hypothesis that post neonatal neural stimulation is not required for cell fate determination and maintenance of phenotype. Many of the transcripts that exhibit marked differential night/day expression exhibited similar changes in response to in vitro treatment with norepinephrine, the SCG neurotransmitter which mediates pineal regulation. Similar changes were also seen following treatment with an analog of the norepinephrine second messenger, cyclic AMP. Overall design: For the in vivo data, there were 8 biological conditions: day and night time points for each of four surgical groups: Control (Ctrl) Sham-surgery (Sham), Decentralized (DCN), and Ganglionectomized (SCGX). Samples were pooled into three biological replicates for each biological condition. For the in vitro data there were 3 biological conditions: Untreated control (CN), DBcAMP-treated (DB), and Norepinephrine-treated (NE). For the pineal enrichment comparison, three samples (i.e. no biological replicates) were used: pineal-day, pineal-night and mixed-tissue. For the mixed tissues sample, the following tissues from three rats sacrificed at ZT7 were used: cortex, cerebellum, midbrain, hypothalamus, hindbrain, spinal cord, retina, pituitary, heart, liver, lung, kidney, skeletal muscle, small intestine, adrenal gland. Total RNA was extracted from each tissue, and then equal amounts of each of the 15 tissues were combined for the final pooled sample.
Neurotranscriptomics: The Effects of Neonatal Stimulus Deprivation on the Rat Pineal Transcriptome.
No sample metadata fields
View SamplesMicroarray analysis was performed to determine the transcriptional profiles of NKT, CD1d-aGC+ Va24-, and CD4 T cells.
A naive-like population of human CD1d-restricted T cells expressing intermediate levels of promyelocytic leukemia zinc finger.
Specimen part
View SamplesTo understand the molecular control of development and regeneration in the mammalian cochlear sensory epithelia, we performed a comparative study of gene expression patterns between postnatal day-3 (P3) and adult stages using a microarrays approach.
Transcriptomic analysis of the developing and adult mouse cochlear sensory epithelia.
Specimen part
View SamplesCell-based models of many neurological and psychiatric diseases, established by reprogramming patient somatic cells into human induced pluripotent stem cells (hiPSCs), have now been reported. While numerous reports have demonstrated that neuronal cells differentiated from hiPSCs are electrophysiologically active mature neurons, the age of these cells relative to cells in the human brain remains unresolved. Comparisons of gene expression profiles of hiPSC-derived neural progenitor cells (NPCs) and neurons to the Allen BrainSpan Atlas indicate that hiPSC neural cells most resemble first trimester neural tissue. Consequently, we posit that hiPSC-derived neural cells may most accurately be used to model the early developmental defects that contribute to disease predisposition rather than the late features of the disease. Though the characteristic symptoms of schizophrenia (SCZD) generally appear late in adolescence, it is now thought to be a neurodevelopmental condition, often predated by a prodromal period that can appear in early childhood. Postmortem studies of SCZD brain tissue typically describe defects in mature neurons, such as reduced neuronal size and spine density in the prefrontal cortex and hippocampus, but abnormalities of neuronal organization, particularly in the cortex, have also been reported. We postulated that defects in cortical organization in SCZD might result from abnormal migration of neural cells. To test this hypothesis, we directly reprogrammed fibroblasts from SCZD patients into hiPSCs and subsequently differentiated these disorder-specific hiPSCs into NPCs. SCZD hiPSC differentiated into forebrain NPCs have altered expression of a number of cellular adhesion genes, reduced WNT signaling and aberrant cellular migration.
Phenotypic differences in hiPSC NPCs derived from patients with schizophrenia.
Sex, Specimen part, Disease, Disease stage
View SamplesThe use of nucleic acids from formalin-fixed paraffin-embedded (FFPE) tissues for high-throughput molecular techniques, such as microarray gene expression profiling has become widespread in molecular research area. However, working with FFPE tissues is challenging because of degradation, cross-linking with proteins, and RNA chemical modifications. Also, there is no generally accepted procedure for RNA extraction to microarray analysis. Thus, there is a need for a standardized workflow for FFPE samples to study microarray transcriptome profiling. Therefore, the main purpose of this study was to conduct a standardized process from deparaffinization to RNA extraction and microarray gene expression analysis. Firstly, deparaffinization procedure was optimized for FFPE samples and then Trizol, PicoPure RNA isolation kit, and Qiagen RNeasy FFPE kit performances were compared in terms of yield and purity. Finally, two different cRNA/cDNA preparation and labeling protocols with two different array platforms (Affymetrix Human Genome U133 Plus 2.0 and U133_X3P) were also evaluated to determine which combination gives the best percentage of present call. Our optimization study shows that the Qiagen RNeasy FFPE kit with modified deparaffinization step gives better results (RNA quantity and quality) than the other two isolation kits. The Ribo-SPIA protocol and U133_X3P array combination gave a significantly higher percentage of present calls than the 3 IVT cDNA amplification and labeling system. However, no significant differences were found between the two array platforms. These results present a workflow for microarray gene expression profiling of FFPE tissues. The findings also indicate that sufficient quality gene expression data can be obtained from FFPE-derived RNA.
Optimization of gene expression microarray protocol for formalin-fixed paraffin-embedded tissues.
Specimen part
View SamplesTumors engender an environment dominated by M2 differentiated tumor macrophages that support tumor invasion, metastases and escape from immune control. In this study, we demonstrate that following radiation therapy of tumors in mice there is an influx of tumor macrophages that polarize towards wound repair and immune suppression.
Expression of NF-κB p50 in tumor stroma limits the control of tumors by radiation therapy.
Specimen part, Treatment, Time
View SamplesWe conducted a preliminary investigation to determine whether ethanol-induced alterations in placental gene expression may have some utility as a diagnostic indicator of maternal drinking during pregnancy as well as a prognostic indicator of risk for adverse neurobehavioral outcomes in affected offspring.
Effects of moderate drinking during pregnancy on placental gene expression.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
MRPL53, a New Candidate Gene for Orofacial Clefting, Identified Using an eQTL Approach.
Sex, Specimen part, Disease, Disease stage
View SamplesA valuable approach to understand how individual and population genetic differences can predispose to disease is to assess the impact of genetic variants on cellular functions (e.g., gene expression) of cell and tissue types related to pathological states. To understand the genetic basis of nonsyndromic cleft lip with or without cleft palate (NSCL/P) susceptibility, a complex and highly prevalent congenital malformation, we searched for genetic variants with a regulatory role in a disease-related tissue, the lip muscle (orbicularis oris muscle [OOM]), of affected individuals. From 46 OOM samples, which are frequently discarded during routine corrective surgeries on patients with orofacial clefts, we derived mesenchymal stem cells and correlated the individual genetic variants with gene expression from these cultured cells. Through this strategy, we detected significant cis-eQTLs (i.e., DNA variants affecting gene expression) and selected a few candidates to conduct an association study in a large Brazilian cohort (624 patients and 668 controls). This resulted in the discovery of a novel susceptibility locus for NSCL/P, rs1063588, the best eQTL for the MRPL53 gene, where evidence for association was mostly driven by the Native American ancestry component of our Brazilian sample. MRPL53 (2p13.1) encodes a 39S protein subunit of mitochondrial ribosomes and interacts with MYC, a transcription factor required for normal facial morphogenesis. Our study illustrates not only the importance of sampling admixed populations but also the relevance of measuring the functional effects of genetic variants over gene expression to dissect the complexity of disease phenotypes.
MRPL53, a New Candidate Gene for Orofacial Clefting, Identified Using an eQTL Approach.
Sex, Specimen part
View SamplesA QTL intercross was performed bewteen C57BL/6J and KK/HIL for albuminurea, asthma and cardiovascular related phenotypes. Several QTL were identified for most phenotypes. We performed microarray analysis from liver samples to identify genes differentially expressed between the parental strains. The results helped us narrow down the QTL and identify the candidate genes based on differential expression between the parental strains.
A major X-linked locus affects kidney function in mice.
Sex, Specimen part
View Samples