The Gata2 transcription factor is a pivotal regulator of hematopoietic stem cell (HSC) development and maintenance. Gata2 functions in the embryo during endothelial cell to hematopoietic cell transition (EHT) to affect hematopoietic cluster, HPC and HSC formation. Although previous studies of cell populations phenotypically enriched in HPCs and HSCs show expression of Gata2, there has been no direct study of Gata2 expressing cells during normal hematopoiesis. In this study we generate a Gata2 Venus reporter mouse model with unperturbed Gata2 expression to examine the hematopoietic function and transcriptome of Gata2 expressing and nonexpressing cells. Overall design: Gata2Venus- HPCs 1 replicate, Gata2Venus+ HPCs 1 replicate
Functional and molecular characterization of mouse Gata2-independent hematopoietic progenitors.
Specimen part, Cell line, Subject
View SamplesThe first HSCs are produced in the aorta-gonadmesonephros (AGM) region of the embryo through endothelial to a hematopoietic transition. BMP4 and Hedgehog affect their production/expansion, but it is unknown whether they act to affect the same HSCs. In this study using the BRE GFP reporter mouse strain that identifies BMP/Smad-activated cells, we find that the AGM harbors two types of adult-repopulating HSCs upon explant culture. Overall design: Embryonic day 11 AGM are dissected and either analyzed directly, or after explant culture in conditions containing BMP/Hedgehog with or without cyclopamine. EC: endothelial enriched (CD31+Kit-); MC: mesenchymal cell enriched (CD31-Kit-); HPSC: hematopoietic progenitor/stem cell enriched; AGM11: E11 fresh AGMs; AGMex: AGM after explant culture; AGMcy: AGM after explant in presence of cyclopamine; CD31p: CD31 positive; CD31n: CD31 negative; KITp: c-Kit positive; KITn: c-Kit negative; BREp: BRE-GFP positive; BREn: BRE-GFP negative
BMP and Hedgehog Regulate Distinct AGM Hematopoietic Stem Cells Ex Vivo.
Specimen part, Cell line, Subject
View SamplesHematopoietic stem cells (HSCs) are generated via a natural transdifferentiation process known as endothelial-to-hematopoietic cell transition (EHT). Due to small numbers of embryonal arterial cells undergoing EHT and the paucity of markers to enrich for hemogenic endothelial cells, the genetic program driving HSC emergence is largely unknown. Here, we use a highly sensitive RNAseq method to examine the whole transcriptome of small numbers of enriched aortic HSCs (CD31+cKit+Ly6aGFP+), hemogenic endothelial cells (CD31+cKit-Ly6aGFP+) and endothelial cells (CD31+cKit-Ly6aGFP-). Overall design: Comparison of mRNA profiles of endothelial cells, hemogenic endothelial cells, and hematopoietic stem cells generated by deep-sequencing of sorted populations from pool of embryos, in triplicate.
Whole-transcriptome analysis of endothelial to hematopoietic stem cell transition reveals a requirement for Gpr56 in HSC generation.
No sample metadata fields
View SamplesDifferent combinations of Endoglin tissue specific enhancers define hemangioblast and hemogenic endothelium cell fractions Overall design: We generated a series of embryonic stem cell lines, each targeted with reporter constructs driven by tissue specific promoter/enhancer combinations of Endoglin (ENG). The Eng promoter (P) when combined with the -8/+7/+9kb enhancers targeted cells in FLK1 mesoderm that were enriched for blast colony forming potential, whereas the P/-8kb enhancer targeted TIE2+/c-KIT+/CD41- HE cells that were enriched for hematopoietic potential. These cell fractions were isolated and their transcriptomes profiled by RNA-seq.
Identification of novel regulators of developmental hematopoiesis using Endoglin regulatory elements as molecular probes.
Subject
View SamplesWe analyzed gene expression profiles of myeloma cells belonging to the group of bas prognosis RPMI 8226 and LP1 expressing either the GFP protein or a cyclin D1-GFP fusion protein
Cyclin D1 sensitizes myeloma cells to endoplasmic reticulum stress-mediated apoptosis by activating the unfolded protein response pathway.
Specimen part, Cell line
View SamplesBefore birth B-cells develop in the fetal liver (FL). Here we show that Gli3 activity in the FL stroma is required for B-cell development. In the Gli3-deficient FL B-cell development was reduced at multiple stages, whereas the Sonic hedgehog (Shh)-deficient FL showed increased B-cell development, and Gli3 functioned to repress Shh transcription. Use of a transgenic Hedgehog (Hh)-reporter mouse showed that Shh signals directly to developing B-cells, and that Hh pathway activation was increased in developing B-cells from Gli3-deficient fetal liver. RNAsequencing confirmed that Hh-mediated transcription is increased in B-lineage cells from Gli3-deficient FL, and showed that these cells expressed reduced levels of B-lineage transcription factors and BCR/pre-BCR-signalling genes. We showed that expression of the master regulators of B-cell development, Ebf1 and Pax5, is reduced in developing B-cells from Gli3-deficient FL and increased in Shh-deficient FL, and that in vitro Shh-treatment or neutralisation can repress or induce their expression respectively. Overall design: Wildtype and Gli3 mutant (Gli3+/- and Gli3-/-) (n=2) embryonic day 17.5 fetal livers were sorted for CD19+B220+ cells. RNA extracted from these cells was sequenced to help understand the transcriptional changes governing B cell development in the Gli3 mutants.
The transcription factor Gli3 promotes B cell development in fetal liver through repression of Shh.
Specimen part, Subject
View SamplesInnate immune response is the first line of antiviral defense resulting, in most cases, in pathogen clearance with minimal clinical consequences. Viruses have developed diverse strategies to evade innate immune response and to ensure their survival. Using transmissible gastroenteritis virus (TGEV) as a model, we previously reported that accessory gene 7 counteracts host antiviral response by its association with the catalytic subunit of protein phosphatase 1 (PP1c). A transcriptomic analysis was performed to further investigate the effect of gene 7 absence on the host cell.
Alphacoronavirus protein 7 modulates host innate immune response.
Specimen part, Cell line, Time
View SamplesCyanide is stoichiometrically produced as a co-product of the ethylene biosynthesis pathway, and it is detoxified by the b-cyanoalanine synthase enzyme. The molecular and phenotypical analysis of T-DNA insertional mutants of the mitochondrial b-cyanoalanine synthase CYS-C1 suggests that discrete accumulation of cyanide is not toxic for the plant and does not alter mitochondrial respiration rates, but does act as a strong inhibitor of root hair development. The cys-c1 null allele is defective in root hair formation and accumulates cyanide in root tissues. The root hair defect is phenocopied in wild type plants by the exogenous addition of cyanide to the growth medium and is reversed by the addition of hydroxocobalamin. Hydroxocobalamin not only recovers the root phenotype of the mutant, but also the formation of ROS at the initial step of the root hair tip. Transcriptional profile analysis of the cys-c1 mutant reveals that cyanide accumulation acts as a repressor signal for several genes encoding enzymes involved in cell wall rebuilding and the formation of the root hair tip, as well as genes involved in ethylene signaling and metabolism. Our results demonstrate that mitochondrial b-cyanoalanine synthase activity is essential to maintain a low level of cyanide for proper root hair development.
Mitochondrial beta-cyanoalanine synthase is essential for root hair formation in Arabidopsis thaliana.
Specimen part
View SamplesMultiple Myeloma (MM) is an hematological malignancy. MM cells are resistant to X-ray irradiations. We irradiated RPMI 8226 cancer cells with C-ions, which are more energetic than X-ray irradiations. We found that MM cells, RPMI 8226, are also resistant to C-ion irradiations.
HIF-1α and rapamycin act as gerosuppressant in multiple myeloma cells upon genotoxic stress.
Cell line
View SamplesTime-point expression analysis of fractures calluses at 1, 3, and 5 days post-fracture in young and old BALB/c mice.
Identification of novel gene expression in healing fracture callus tissue by DNA microarray.
Age, Specimen part
View Samples