Toxic shock syndrome (TSS) is an acute, serious systemic illness caused by bacterial superantigens (BSAg). We characterized the early molecular events underlying TSS using our HLA-DR3 transgenic mouse model and studied gene expression profiling using DNA microarrays.
Early gene expression changes induced by the bacterial superantigen staphylococcal enterotoxin B and its modulation by a proteasome inhibitor.
Specimen part
View SamplesChemical exposures in fish have been linked to loss of olfaction leading to an inability to detect predators and prey and decreased survival. However, the mechanisms underlying olfactory neurotoxicity are not well characterized, especially in environmental exposures which involve chemical mixtures. We used zebrafish to characterize olfactory transcriptional responses by two model olfactory inhibitors, the pesticide chlorpyrifos (CPF) and mixtures of CPF with the neurotoxic metal copper (Cu).
Transcriptional biomarkers and mechanisms of copper-induced olfactory injury in zebrafish.
Specimen part, Treatment
View SamplesThe capacity of embryonic stem cells to differentiate into all lineages of mature organism is precisely regulated by cellular signaling factors. STAT3 is a crucial transcription factor that plays a central role in maintaining embryonic stem cells identity. However the underlying mechanism how Stat3 directs differentiation is still not completely understood. Here we show that Stat3 positively regulates gene expression of methyltransferase like protein 8 (Mettl8) in mouse ES cells. We found that Mettl8 is dispensable for pluripotency but affects ESCs differentiation. Subsequently we discovered that Mettl8 interacts with Mapkbp1's mRNA, which is an intermediate factor in JNK signaling, and inhibits the translation of the mRNA. Thereby, Mettl8 prohibits the activation of JNK signaling and enhances the differentiation of mouse ESCs. Collectively, our study uncovers a Stat3 target Mettl8 which regulates mouse ESCs differentiation via JNK signaling. Overall design: mRNA profiles of E14 cells transfected with scramble siRNA or Mettl8 siRNA were generated by deep sequencing, in triplicate, using Illumina GAIIx.
The STAT3 Target Mettl8 Regulates Mouse ESC Differentiation via Inhibiting the JNK Pathway.
Specimen part, Cell line, Subject
View SamplesPurpose: The goal of this study is to compare the transcriptional phenotype of lymphoid and kidney-infiltrating T cell populations in the setting of systemic inflammatory disease to determine how tissue location alters their phenotype. Methods: mRNA profiles of T cells isolated from 23-week-old nephritic (protein score of 3+ on dipstick) mice were used in this study. T cells were isolated by flow cytometry gated on CD45+Thy1.1+CD44+ and either CD4 or CD8+ T cells. RNA was isolated using the RNeasy Plus Micro Kit (Qiagen). Samples were sequenced using Illumina NextSeq 500 with 75bp paired-end reads and aligned to the mm10 genome using the STAR aligner. The number of uniquely aligned reads ranged from 10 to 12 million. Using an optimized data analysis workflow, Gene-level counts were determined using featureCounts and raw counts were analyzed for differential expression using the “voom” method in the “limma” R package. Results: After determining genes that were differentially expressed between splenic T cells and KIT, we performed gene set enrichment analysis (GSEA. Differentially expressed genes were compared to several previously defined gene signatures that are characteristic of CD8+ and CD4+ T cell exhaustion in the chronic LCMV infection model and tumor infiltrating lymphocytes. Genes from the CD8+ exhaustion cluster were significantly enriched among genes that were differentially expressed in CD8+ KITs vs CD8+ splenocytes. Overall design: mRNA profiles of CD4 and CD8 T cells from spleen and kidney of 23 week old wild MRL/lpr mice were generated in triplicate by sequencing using Illumina NextSeq 500
Kidney-infiltrating T cells in murine lupus nephritis are metabolically and functionally exhausted.
Age, Specimen part, Cell line, Subject
View SamplesThis study analysed the transcriptome of mouse Rex1GFPd2 cells before and during early differentiation and further investigated the transcriptomic changes of Nprl2 and Tsc2 knockout. Overall design: RNA samples were collected before differentiation, and on day 1, 2, 3 of differentiation; RNA samples of Rex1GFP positive population were collected for Nprl2, Tsc2 knockout and compared to wild type cells.
Genome-wide CRISPR-KO Screen Uncovers mTORC1-Mediated Gsk3 Regulation in Naive Pluripotency Maintenance and Dissolution.
Specimen part, Cell line, Subject
View SamplesHuman airway epithelial cells cultured in vitro at air-liquid interface (ALI) form a pseudostratified epithelium that forms tight junctions and cilia, and produces mucin, and are widely used as a model of differentiation, injury, and repair. To assess how closely the transcriptome of ALI epithelium matches that of in vivo airway epithelial cells, we used microarrays to compare the transcriptome of human large airway epithelial cells cultured at ALI with the transcriptome of large airway epithelium obtained via bronchoscopy and brushing. Gene expression profiling showed global gene expression correlated well between ALI cells and brushed cells, but there were some differences. Gene expression patterns mirrored differences in proportions of cell types (ALI have higher percentages of basal cells, brushed cells have higher percentages of ciliated cells), with ALI cells expressing higher levels of basal cell-related genes and brushed cells expressing higher levels of cilia-related genes. Pathway analysis showed ALI cells had increased expression of cell cycle and proliferation genes, while brushed cells had increased expression of cytoskeletal organization and humoral immune response genes. Overall, ALI cells are a good representation of the in vivo airway epithelial transcriptome, but for some biologic questions, the differences in the in vitro vs in vivo environments need to be considered.
Do airway epithelium air-liquid cultures represent the in vivo airway epithelium transcriptome?
Sex, Age
View SamplesRNA-seq of Wild Type (N2), pmk-1 or atf-7 mutant animals exposed to either non-pathogenic E. coli OP50 or pathogenic P. aeruginosa PA14 Overall design: mRNA profiles were generated using 3 replicates (>1,000 animals each) of each condition were prepared and sequenced, except for atf-7(qd22qd130) on PA14 which had only 2 replicates. Sequenced on Illumina NextSeq 500
Global transcriptional regulation of innate immunity by ATF-7 in C. elegans.
Specimen part, Subject
View SamplesDecidual macrophage populations, CD11cHI and CD11cLO cells were analyzed for expression profiles and unique characteristics.
Two unique human decidual macrophage populations.
Specimen part
View SamplesMedroxyprogesterone acetate (MPA) is a progestin that can bind to and activate progesterone, androgen and glucocorticoid receptors. However, it is not known which receptor mediates MPA action in a cellular context where all three of these receptors are co-expressed and functional.
Anti-proliferative transcriptional effects of medroxyprogesterone acetate in estrogen receptor positive breast cancer cells are predominantly mediated by the progesterone receptor.
Cell line, Treatment
View SamplesBackground: Whereas cilia damage and reduced cilia beat frequency have been implicated as causative of reduced mucociliary clearance in smokers, theoretically mucociliary clearance could also be affected by cilia length. Based on models of mucociliary clearance predicting cilia length must exceed the 6 -7 m airway surface fluid depth to generate force in the mucus layer, we hypothesized cilia height may be decreased in airway epithelium of normal smokers compared to nonsmokers.
Smoking is associated with shortened airway cilia.
Sex, Age
View Samples