The data presented is intended to analyse the changes in the expression profiles of human MSCs (Mesenchymal Stromal/Stem Cells) associated to different tissue specific stimulus.
Insights into the human mesenchymal stromal/stem cell identity through integrative transcriptomic profiling.
Specimen part
View SamplesAlternative mRNA splicing represents an effective mechanism of regulating gene function and is a key element to increase the coding capacity of the human genome. Today, an increasing number of reports illustrates that aberrant splicing events are common and functionally important for cancer development. However, more comprehensive analyses are warranted to get novel insights into the biology underlying malignancies like e.g. acute myeloid leukemia (AML). Here, we performed a genome-wide screening of splicing events in AML using an exon microarray platform. We analyzed complex karyotype and core binding factor (CBF) AML cases (n=64) in order to evaluate the ability to detect alternative splicing events distinguishing distinct leukemia subgroups. Testing different commercial and open source software tools to compare the respective AML subgroups, we could identify a large number of potentially alternatively spliced transcripts with a certain overlap of the different approaches. Selected candidates were further investigated by PCR and sequence analysis: out of 24 candidate genes studied, we could confirm alternative splice forms in 8 genes of potential pathogenic relevance, such as PRMT1 regulating transcription through histone methylation and participating in DNA damage response, and PTPN6, which encodes for a negative regulator of cell cycle control and apoptosis. In summary, this first large Exon microarray based study demonstrates that transcriptome splicing analysis in AML is feasible but challenging, in particular with regard to the currently available software solutions. Nevertheless, our results show that alternatively spliced candidate genes can be detected, and we provide a guide how to approach such analyses.
A robust estimation of exon expression to identify alternative spliced genes applied to human tissues and cancer samples.
Specimen part, Disease, Disease stage
View SamplesWe used manual macrodissection or laser capture microdissection (LCM) to isolate tissue sections of the hippocampus area of Ras-GRF1 wild type and knockout mice brains, and analyzed their transcriptional patterns using commercial oligonucleotide microarrays. Comparison between the transcriptomes of macrodissected and microdissected samples showed that the LCM samples allowed detection of significantly higher numbers of differentially expressed genes, with higher statistical rates of significance. These results validate LCM as a reliable technique for in vivo genomic studies in the brain hippocampus, where contamination by surrounding areas (not expressing Ras-GRF1) increases background noise and impairs identification of differentially expressed genes. Comparison between wild type and knockout LCM hippocampus samples revealed that Ras-GRF1 elimination caused significant gene expression changes, mostly affecting signal transduction and related neural processes. The list of 36 most differentially expressed genes included loci concerned mainly with Ras/G protein signaling and cytoskeletal organization (i.e. 14-3-3/, Kcnj6, Clasp2) or related, cross-talking pathways (i.e. jag2, decorin, strap). Consistent with the phenotypes shown by Ras-GRF1 knockout mice, many of these differentially expressed genes play functional roles in processes such as sensory development and function (i.e. Sptlc1, antiquitin, jag2) and/or neurological development/neurodegeneration processes affecting memory and learning. Indeed, potential links to neurodegenerative diseases such as Alzheimer disease (AD) or Creutzfeldt-Jacobs disease (CJD), have been reported for a number of differentially expressed genes identified in this study (Ptma, Aebp2,Clasp2, Hebp1, 14-3-3/, Csnk1, etc.). These data, together with the previously described role of IRS and insulin (known Ras-GRF1 activators) in AD, warrant further investigation of a potential functional link of Ras-GRF1 to neurodegenerative processes.
Laser microdissection and microarray analysis of the hippocampus of Ras-GRF1 knockout mice reveals gene expression changes affecting signal transduction pathways related to memory and learning.
No sample metadata fields
View SamplesInsight into the role of Insulin-like Growth Factor (IGF) in development of lungs has come from the study of genetically modified mice. IGF1 is a key factor during lung development. IGF1 deficiency in the neonatal mouse causes respiratory failure collapsed alveoli and altered alveolar septa. To further characterize IGF1 function during lung development we analyzed Igf1-/- mouse prenatal lungs in a C57Bl/6 genetic background. Mutant lungs showed disproportional hypoplasia, disorganized extracellular matrix and dilated alveolar capillaries. IGF1 target genes during lung maturation were identified by analyzing RNA differential expression in Igf1-/- lungs using microarrays.
Transcriptome analysis in prenatal IGF1-deficient mice identifies molecular pathways and target genes involved in distal lung differentiation.
Specimen part
View SamplesBone is a frequent target of lung cancer metastasis, which is associated with significant morbidity and a dismal prognosis. To identify and functionally characterize genes involved in the mechanisms of osseous metastasis we developed a murine lung cancer model. Comparative transcriptomic analysis identified genes encoding signaling molecules (such as TCF4 and PRKD3), and cell anchorage related proteins (MCAM, and SUSD5), some of which were basally modulated by TGFbeta in tumor cells and in conditions mimicking tumor-stroma interactions. Triple gene combinations induced not only high osteoclastogenic activity but also a marked enhancement of global metalloproteolytic activities in vitro. These effects were strongly associated with robust bone colonization in vivo, whereas this gene subset was ineffective in promoting local tumor growth and cell homing activity to bone. Interestingly, global inhibition of metalloproteolytic activities and simultaneous TGFbeta blockade in vivo led to increased survival and a remarkable attenuation of bone tumor burden and osteolytic metastasis. Thus, this metastatic gene signature mediates bone-matrix degradation by a dual mechanism of induction of TGFbeta-dependent osteoclastogenic bone resorption and enhancement of stroma-dependent metalloproteolytic activities. Our findings suggest the cooperative contribution of host-derived and cell-autonomous effects directed by a small subset of genes in mediating aggressive osseous colonization.
A novel lung cancer signature mediates metastatic bone colonization by a dual mechanism.
No sample metadata fields
View SamplesEstrogen-Related Receptor alpha (ERR) is a nuclear receptor that acts principally as a regulator of metabolism processes particularly in tissues subjected to high-energy demand. Besides its implication in energy metabolism and mitochondrial biogenesis, ERR was recently associated with tumorigenesis. Notably, increased expression of ERR was noted in different cancerous tissues as breast, ovary and colon. However, supplemental studies are required to better understand the role of ERR in colon carcinoma.
ERRα metabolic nuclear receptor controls growth of colon cancer cells.
Cell line, Treatment
View SamplesThe tumoral clone of Waldenstrms macroglobulinemia (WM) shows a wide morphological heterogeneity which ranges from B-lymphocytes (BL) to plasma cells (PC). By means of genome-wide expression profiling we have been able to identify genes exclusively deregulated in BL and PC from WM, but with a similar expression pattern in their corresponding cell-counterparts from CLL and MM, as well as normal individuals. The differentially expressed genes have important functions in B-cell differentiation and oncogenesis. Thus, two of the genes down-regulated in WM-BL were IL4R, which plays a relevant role in CLL B cell survival, and BACH2 that participates in the development of class-switched PC. Interestingly, one of the up-regulated genes in WM-BL was IL6. A set of 4 genes was able to discriminate clonal B-lymphocytes from WM and CLL: LEF1 (WNT/catenin pathway), MARCKS, ATXN1 and FMOD. We also found deregulation of genes involved in plasma cell differentiation such as PAX5 which was overexpressed in WM-PC, and IRF4 and BLIMP1 which were underexpressed. In addition, three of the target genes activated by PAX5 -CD79, BLNK and SYK- were up-regulated in WM-PC. In summary, these results indicate that both PC and BL from WM are genetically different from the MM and CLL cell-counterpart.
Gene expression profiling of B lymphocytes and plasma cells from Waldenström's macroglobulinemia: comparison with expression patterns of the same cell counterparts from chronic lymphocytic leukemia, multiple myeloma and normal individuals.
No sample metadata fields
View SamplesCystatin D (CST5) is an inhibitor of several proteases of the cathepsin family that inhibits cell proliferation, migration and invasion of colon carcinoma cells. Some of these effects are unrelated to its antiprotease activity. Here, we use genome-wide expression microarrays to show that cystatin D regulates gene expression (including that of genes encoding transcription factors such as RUNX1, RUNX2, or MEF2C) in HCT116 cells.
Cystatin D locates in the nucleus at sites of active transcription and modulates gene and protein expression.
Specimen part, Cell line
View SamplesMesenchymal stromal cells (MSCs) derived from the BM of healthy donors (dMSCs) and myeloma patients (pMSCs) were co-cultured with the model myeloma cell line - MM.1S -, and the gene expression profile of MSCs induced by this interaction was analyzed using high density oligonucleotide microarrays. Deregulated genes in co-culture common to both d/pMSCs revealed functional involvement in tumor microenvironment cross-talk, myeloma growth induction and drug resistance, angiogenesis and signals for osteoclast activation and inhibition of osteoblasts. Additional genes induced by co-culture were exclusively deregulated in pMSCs and were predominantly associated to RNA processing, the ubiquitine-proteasome pathway, regulation of cell cycle and Wnt signaling.
Transcriptomic profile induced in bone marrow mesenchymal stromal cells after interaction with multiple myeloma cells: implications in myeloma progression and myeloma bone disease.
Specimen part
View SamplesSpecific microRNA (miRNA) signatures have been associated with different cytogenetic subtypes in acute leukemias. This finding prompted us to investigate potential associations between genetic abnormalities in multiple myeloma (MM) and singular miRNA expression profiles. Moreover, global gene expression profiling was also analyzed to find correlated miRNA-gene expression and select miRNA target genes that show such correlation. For this purpose, we analyzed the expression level of 365 miRNAs and the gene expression profiling in sixty newly diagnosed MM patients, selected to represent the most relevant recurrent genetic abnormalities. Supervised analysis showed significantly deregulated miRNAs in the different cytogenetic subtypes as compared to normal PC. Interestingly, miR-1 and miR-133a clustered on the same chromosomal loci, were specifically overexpressed in the cases with t(14;16). The analysis of the relationship between miRNA expression and their respective target genes showed a conserved inverse correlation between several miRNAs deregulated in MM cells and CCND2 expression level. These results illustrate, for the first time, that miRNA expression pattern in MM is associated with genetic abnormalities, and that the correlation of the expression profile of miRNA and their putative mRNA targets is useful to find statistically significant protein-coding genes in MM pathogenesis associated to changes in specific miRNAs.
Deregulation of microRNA expression in the different genetic subtypes of multiple myeloma and correlation with gene expression profiling.
Specimen part, Disease
View Samples