We identified fibro-inflammatory and keratin gene expression signatures in systemic sclerosis skin.
Dissecting the heterogeneity of skin gene expression patterns in systemic sclerosis.
Age, Specimen part, Race, Subject, Time
View SamplesWe developed a method to convert gene expression signatures across the Illumina and Affymetrix platforms.
Cross-platform prediction of gene expression signatures.
Specimen part
View SamplesWe identified eighty two skin transcripts significantly correlated with the severity of interstitial lung disease (ILD) in systemic sclerosis.
Skin gene expression correlates of severity of interstitial lung disease in systemic sclerosis.
Age, Specimen part, Race, Subject
View SamplesNuclear receptor (NR)-mediated transcription is a dynamic process that is regulated by the binding of distinct ligands that induce conformational changes in the NR. These molecular alterations lead to the recruitment of unique cofactors (coactivators or corepressors) that control the expression of NR-regulated genes. Here, we show that a stretch of proline residues located within the N-terminus of AR is necessary for maximal androgen-mediated prostate cancer cell growth and migration. Furthermore, this polyproline domain is necessary for the expression of a subset of AR-target genes, but is dispensable for classical AR-mediated gene transcription. Using T7 phage display, we subsequently identified a novel AR-interacting protein, SH3YL1, whose interaction with AR is dependent upon this polyproline domain. Like the AR polyproline domain, SH3YL1 was required for maximal androgen-mediated cell growth and migration. Microarray analysis revealed that SH3YL1 also regulated a subset of AR-modulated genes. Correspondingly, we identified ubinuclein1 (UBN1), a key member of a histone H3.3 chaperone complex, as a transcriptional target of AR/SH3YL1. Moreover, UBN1 was necessary for maximal androgen-mediated proliferation and migration. Collectively, our data link a specific surface located within ARs N-terminus to the recruitment of a novel cofactor, SH3YL1, which is required for the androgen-mediated expression of UBN1. Importantly, this signaling network was important for both androgen-mediated prostate cancer cell growth and migration. This work is significant because it could aid in the development of selective androgen receptor modulators (SARMs) and have therapeutic implications for AR-driven diseases.
Identification of a Novel Coregulator, SH3YL1, That Interacts With the Androgen Receptor N-Terminus.
Specimen part
View SamplesGene expression profiles were collected from HEK-HT cells expressing H-Ras with Ras-activating (G12V), Raf-activating (G12V,T35S), RalGEF-activating (G12V,E37G), or PI3K-activating (G12V,Y40C) mutations.
A genomic strategy to elucidate modules of oncogenic pathway signaling networks.
Specimen part
View SamplesThe goal of this study was to assess whether the presence of HLA-B*35 contributes to activation of ER stress/UPR and inflammation in lcSScPAH PBMC.
The HLA-B*35 allele modulates ER stress, inflammation and proliferation in PBMCs from Limited Cutaneous Systemic Sclerosis patients.
Specimen part
View SamplesWe used microarrays to investigate the transcription profile of FOXC2 expression in a human mammary epithelial cell line.
FOXC2 expression links epithelial-mesenchymal transition and stem cell properties in breast cancer.
Cell line
View SamplesBone marrow mesenchymal stromal cells (MSCs) regulate homeostasis and trafficking of cells of the blood lineage. In response to traumatic injury or infection, MSCs are believed to mobilize from the bone marrow, but it is largely unknown how egress into circulation impacts MSC function. Here we show that biomechanical forces associated with trafficking of MSCs from the bone marrow into the vasculature contribute uniquely to genetic signaling that reinforces MSC repression of immune cell activation. Laminar wall shear stress (LSS) typical of fluid frictional forces present on the lumen of arterioles stimulates increases in antioxidant and anti-inflammatory mediators, as well as an array of chemokines capable of immune cell recruitment. Importantly, LSS promotes a signaling cascade through COX2 that elevates prostaglandin E2 (PGE2) biosynthesis, permitting MSCs to suppress immune cell activation in the presence of inflammatory cues. Pharmacological inhibition of COX2 depleted PGE2 and impaired the ability of MSCs to block tumor necrosis factor- (TNF-) production, supporting a key role for PGE2 in the MSC immunomodulatory response to LSS. Preconditioning of MSCs by LSS ex vivo was an effective means of enhancing therapeutic efficacy in a rat model of traumatic brain injury, as evidenced by decreased numbers of apoptotic and M1-type activated microglia in the hippocampus and by retention of endogenous MSCs in the bone marrow. We conclude that biomechanical forces provide critical cues to MSCs residing at the vascular interface which influence MSC immunomodulatory and paracrine functions, thus providing unique opportunities for functional enhancement of MSCs used in therapeutic applications.
Biomechanical Forces Promote Immune Regulatory Function of Bone Marrow Mesenchymal Stromal Cells.
Sex, Specimen part, Race, Subject
View SamplesLittle is known about a relationship between intratumor heterogeneity and drug resistant ability in high grade serous ovarian cancer. Using stem cell cloning technique on high grade ovarian cancer, we have cloned ovarian cancer colonies at high efficiency. The heterogeneity of ovarian cancer is recapitulated in cloned cancer colony library, and Taxol treatment (100 nM 3 hrs) has been conducted on cancer library and obtained drug resistant cancer clones in vitro. Using cloned original cancer colonies and drug resistant cancer colonies, we have studied the effect of intratumor heterogeneity on acquisition of drug resistance.
No associated publication
Specimen part
View SamplesBarretts esophagus confers significant risk of esophageal adenocarcinoma. We have established the cloning of patient-matched stem cells of Barretts, gastric, and esophageal epithelium. Barrett's esophagus stem cells (BE), gastric cardia stem cells (GC) and normal esophagus stem cells (Eso) from 12 patients were cloned (For BE: 12 patients, GC: 12 patients and Eso: 2 patients). Keratin 5 positive and Keratin 7 positive cells were cloned from human fetal esophageal epithelium. Using air liquid interface culture system, stem cells were induced to differentiate into mature epithelial structures.
Mutational spectrum of Barrett's stem cells suggests paths to initiation of a precancerous lesion.
Specimen part, Disease, Subject
View Samples